Results of studying the Cu/ITO transparent back contacts for solar cells SnO2:F/CdS/CdTe/Cu/ITO

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.139867

Keywords:

cadmium telluride, transparent rear contact, tandem structure, two-side sensitive photoconverter.

Abstract

We have studied transparent rear contacts Cu/ITO for the CdTe-based solar cells intended to be used in tandem and two-side sensitive instrumental structures. Creating an ohmic contact to the base layers of p-CdTe under industrial production is not practical as only platinum has the work function of electrons required for forming the ohmic transition. That is why the tunnel contacts are typically formed, using the thin films containing copper or copper chalcogenides. However, the diffusion of copper into the base layer leads to the degradation of initial parameters of film solar cells based on CdS/CdTe. Therefore, conditions for creating the transparent rear contacts when using a layer of copper require examination. It was established that the preliminary application of a nanodimensional layer of copper on the CdTe surface in order to form a rear electrode allows the formation of a quality tunneling contact. It is shown that the obtained instrumental structures demonstrate high degradation resistance. After 8 years of operation, the magnitude of efficiency for the examined PEC is nearly identical to the initial value. Studying the light volt-ampere characteristics of the SnO2:F/CdS/CdTe/Cu/ITO solar cells when illuminated from both sides allowed us to establish significant differences between the initial parameters and the light diode characteristics at illumination from a glass substrate and from the rear transparent electrode.

The established differences are due to the influence of a rear diode on the efficiency of photovoltaic processes in the base layer. The examined structure implements an inverse diode regime when a rear contact represents a diode, connected in series relative to the principal diode, which leads to the lower values of efficiency at illumination from the rear electrode. The results obtained demonstrate the need to reduce the thickness of the base layer in order to create effective two-side sensitive elements.

Author Biographies

Natalya Deyneko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Scientific department of problems of civil protection and technogenic and ecological safety of the scientific and research center

Oleg Semkiv, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Vice-rector, Head of department

Department of service organization

Olexander Soshinsky, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Scientific department of problems of civil protection and technogenic and ecological safety of the scientific and research center

Victor Streletc, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Senior Researcher

Scientific department of problems of civil protection and technogenic and ecological safety of the scientific and research center

Roman Shevchenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Researcher

Scientific department of problems of civil protection and technogenic and ecological safety of the scientific and research center

References

  1. Mitchell, K., Fahrenbruch, A. L., Bube, R. H. (1977). Photovoltaic determination of optical‐absorption coefficient in CdTe. Journal of Applied Physics, 48 (2), 829–830. doi: https://doi.org/10.1063/1.323636
  2. Hripunov, G. S., Sokol, E. I., Yakimenko, Yu. I., Meriuc, A. V., Ivashchuk, A. V., Shelest, T. N. (2014). Preobrazovanie solnechnoy energii s ispol'zovaniem kombinacii fotoelektricheskih preobrazovateley s bazovymi sloyami CdTe i CuInSe₂. Fizika i tekhnika poluprovodnikov, 48 (12), 1671–1675.
  3. De Vos, А., Parrott, J., Baruch, P., Landsberg, P. (1994). Вandgap effects in thin-film heterojunction solar cells. Proceeding 12th European Photovoltaic Solar Energy Conference. Amsterdam, 1315–1319.
  4. Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R. et. al. (2011). New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20 %. Progress in Photovoltaics: Research and Applications, 19 (7), 894–897. doi: https://doi.org/10.1002/pip.1078
  5. Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: https://doi.org/10.15587/1729-4061.2016.85617
  6. Li, J., Zhang, Y., Gao, T., Hu, C., Yao, T., Yuan, Q. et. al. (2017). Quantum dot-induced improved performance of cadmium telluride (CdTe) solar cells without a Cu buffer layer. Journal of Materials Chemistry A, 5 (10), 4904–4911. doi: https://doi.org/10.1039/c6ta10441j
  7. Deyneko, N., Khrypunov, G., Semkiv, O. (2018). Photoelectric Processes in Thin-film Solar Cells Based on CdS/CdTe with Organic Back Contact. Journal of Nano- and Electronic Physics, 10 (2), 02029-1–02029-4. doi: https://doi.org/10.21272/jnep.10(2).02029
  8. Alonzo, J., Kochemba, W. M., Pickel, D. L., Ramanathan, M., Sun, Z., Li, D. et. al. (2013). Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics. Nanoscale, 5 (19), 9357. doi: https://doi.org/10.1039/c3nr02226a
  9. Mamazza, R., Balasubramanian, U., More, D. L., Ferekides, C. S. (2002). Thin films of CdIn/sub 2/O/sub 4/ as transparent conducting oxides. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. doi: https://doi.org/10.1109/pvsc.2002.1190640
  10. Minami, T., Kakumu, T., Takeda, Y., Takata, S. (1996). Highly transparent and conductive ZnOIn2O3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films, 290-291, 1–5. doi: https://doi.org/10.1016/s0040-6090(96)09094-3
  11. Venkatesan, M., McGee, S., Mitra, U. (1989). Indium tin oxide thin films for metallization in microelectronic devices. Thin Solid Films, 170 (2), 151–162. doi: https://doi.org/10.1016/0040-6090(89)90719-0
  12. Jeong, W.-J., Park, G.-C. (2001). Electrical and optical properties of ZnO thin film as a function of deposition parameters. Solar Energy Materials and Solar Cells, 65 (1-4), 37–45. doi: https://doi.org/10.1016/s0927-0248(00)00075-1
  13. Meriuts, A. V., Khrypunov, G. S., Shelest, T. N., Deyneko, N. V. (2010). Features of the light current-voltage characteristics of bifacial solar cells based on thin CdTe layers. Semiconductors, 44 (6), 801–804. doi: https://doi.org/10.1134/s1063782610060187
  14. Deyneko, N., Semkiv, O., Khmyrov, I., Khryapynskyy, A. (2018). Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 18–23. doi: https://doi.org/10.15587/1729-4061.2018.124575
  15. Hripunov, G. S., Chernyh, E. P., Kovtun, N. A., Belonogov, E. K. (2009). Gibkie solnechnye moduli na osnove sul'fida i tellurida kadmiya. Fizika i tekhnika poluprovodnikov, 43 (8), 1084–1089.
  16. Chernyh, E. P., Hripunov, G. C., Boyko, B. T. (2002). Ocenka stekhiometrii absorbernyh sloev CuGaSe2 i CuIn0,7Ga0,3Se2 plenochnyh fotoelektricheskih preobrazovateley. Visnyk Sumskoho derzhavnoho universytetu, 13 (46), 133–140.
  17. Boyko, B., Khrypunov, G., Kharchenko, M., Chernikov, A. (2001). Examination of thermal stability of ZnO:Al films obtained by RF-magnetron sputtering without preheating of substrate. Proceeding of 17th European Photovoltaic Solar Energy Conversion and Exhibition. Munich(Germany), 1128–1130.
  18. Boiko, B. T., Chernykh, O. P., Khrypunov, H. S., Kopach, H. Y. (2001). Plivkovi fotoelektrychni peretvoriuvachi na osnovi CuGaSe2. Fizyka i khimiia tverdoho tila, 2 (4), 549–558.
  19. Romeo, A., Bätzner, D. L., Zogg, H., Tiwari, A. N. (2001). Influence of proton irradiation and development of flexible CdTe solar cells on polyimide. MRS Proceedings, 668. doi: https://doi.org/10.1557/proc-668-h3.3
  20. Batzner, D. L., Romeo, A., Zogg, H., Tiwari, A. N., Wendt, R. (2003). Effect of back contact metallization on the stability of CdTe/CdS solar cells. 16 European Photovoltaic Solar Energy Conference: Proceeding of the conference. Glasgow, 353–356.

Downloads

Published

2018-07-31

How to Cite

Deyneko, N., Semkiv, O., Soshinsky, O., Streletc, V., & Shevchenko, R. (2018). Results of studying the Cu/ITO transparent back contacts for solar cells SnO2:F/CdS/CdTe/Cu/ITO. Eastern-European Journal of Enterprise Technologies, 4(5 (94), 29–34. https://doi.org/10.15587/1729-4061.2018.139867

Issue

Section

Applied physics