Development of a method for experimental investigation of combustion process in lean burn gas engines

Authors

  • Dmytro Shvydkyy Company "Motortech GmbH & Co." Hogrever str., 21-23, Celle, Germany, 29223 Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002, Germany https://orcid.org/0000-0002-1694-9187

DOI:

https://doi.org/10.15587/1729-4061.2018.140484

Keywords:

gas engine, cyclic variations, flame kernel, ignition energy, spark discharge, statistical analysis.

Abstract

The problems of engine experiments in the conditions of unstable combustion were considered. A practical problem was the experimental study of the influence of spark discharge parameters of the ignition system on the operation of the gas engine at the lean limit. The possibility of expanding the lean limits by applying a high-energy capacitor discharge spark ignition system under the condition of limited erosion rate of the spark plug electrode surface was investigated. Particular attention was paid to the instability of the spark discharge as a process of transferring a portion of energy to the mixture in order to develop a flame kernel.

After analyzing the results of the experiment, its significant shortcomings associated with the lack of consideration of the phenomenon of cyclic instability of pocesses before ignition of mixture – for example, the spark discharge at the spark plug electrodes were revealed. This fact led to a thorough revision of the experimental research method and formulation of technical requirements to the measuring equipment.

A new method of bench tests by applying the latest automated system for the cycle-by-cycle measurement of spark discharge parameters with simultaneous processing of recorded indicator diagrams and statistical analysis of results for the last 1,000 engine cycles was proposed. The main advantage of the method is an increased reliability of the results of the experiment on the lean burn gas engine and reduction of the time for finding experimental errors.

Given that this method can be implemented only in a specialized measurement system, functional requirements as part of technical specifications for developing a new measuring system were formed.

The results obtained can be used in the experimental studies of combustion in lean burn gas engines at the stage of experiment planning and selection of measuring equipment.

Author Biography

Dmytro Shvydkyy, Company "Motortech GmbH & Co." Hogrever str., 21-23, Celle, Germany, 29223 Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Engineer

Departament of research and development

Postgraduate student

Department of internal combustion engines

References

  1. Abramchuk, F. I., Hutarevych, Yu. F., Dolhanov, K. Ye., Tymchenko, I. I. (2007). Avtomobilni dvyhuny. Kyiv: Aristei, 476.
  2. Abschlussbericht SFB 224. Available at: http://www.sfb224.rwth-aachen.de/bericht.htm
  3. Herdin, G., Herdin, R. (2012). Grundlagen Gasmotoren. PGES GmbH, Germany, 54. Available at: http://www.prof-ges.com/lectures/Gasmotoren_Script_20120418.pdf
  4. Buschbek, М. (2013). Laseroptische Analyse der zyklischen Schwankungen in einem Transparentmotor: dissertation. Technische Universität Darmstadt, 131. Available at: http://tuprints.ulb.tu-darmstadt.de/3379/1/Diss_Buschbeck_online.pdf
  5. Puhl, M. (2011). Corona and Laser Ignition in Internal Combustion Engines, A comparison to conventional spark plug ignition. VDM Verlag Dr. Müller, Saarbrücken, 124. Available at: https://www.morebooks.shop/store/de/book/corona-and-laser-ignition-in-internal-combustion-engines/isbn/978-3-639-32311-5
  6. Rager, J. (2006). Funkenerosion an Zündkerzenelektroden. Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes, 168. Available at: https://www.deutsche-digitale-bibliothek.de/item/52TUM6PRG46OISG5CZSWHH7QIO5GUAZW
  7. Küchler, А. (1996). Hochspannungstechnik. Springer-Verlag Berlin Heidelberg, 398. doi: https://doi.org/10.1007/978-3-662-21999-7
  8. Jeanvoine, N., Jonsson, R., Muecklich, F. (2007). Investigation of the arc and glow phase fractions of ignition discharges in air and nitrogen for Ag, Pt, Cu and Ni electrodes. 28th ICPIG ( July 2007). Prague, Czech Republic, 284–287. Available at: http://icpig2007.ipp.cas.cz/files/download/cd-cko/ICPIG2007/pdf/1P03-04.pdf
  9. Saggau, B. (1981). Kalorimetrie der drei Entladungsformen des elektrischen Zündfunkens. Archiv für Elektrotechnik, 64 (3-4), 229–235. doi: https://doi.org/10.1007/bf01574305
  10. Bane, S. P. M. (2010). Spark ignition – experimental and numerical investigation with application to aviation safety. California Institute of Technology, Pasadena, 284. Available at: https://thesis.library.caltech.edu/5868/1/thesis_SBane.pdf
  11. Schvydkyi, D. (2014). Modern ignition systems for gas engines. Vestnik Har'kovskogo nacional'nogo avtomobil'no-dorozhnogo universiteta, 64, 41–49. URL: http://dspace.khadi.kharkov.ua/dspace/handle/123456789/950
  12. Meyer, G., Stadlbauer, K., Gschirr, A., Lindner-Silwester, T., Puttinger, St. (2013). Modelling of modulated capacity discharge ignition systems. 8. Dessauer Gasmotoren-Konferenz, 253–265.
  13. Herdin, G., Herdin, R., Grewe, F., Warkentin, P. (2013). Wirkungsgradpotenziale bei der ungespülten Vorkammer. 14. Tagung "Der Arbeitsprozess des Verbrennungsmotors". Institut für Verbrennungskraftmaschinen und Thermodynamik, Technische Universität Graz., Austria, 110–126.
  14. Arcoumanis, C., Kamimoto, T. (Eds.) (2009). Flow and Combustion in Reciprocating Engines. Springer-Verlag Heidelberg, Germany, 420. doi: https://doi.org/10.1007/978-3-540-68901-0
  15. Svetcov, V., Holodkov, I. (2008). Fizicheskaya elektronika i elektronnye pribory. Ivanovo, 494.
  16. Fitzner, A. O., Hager, J. R. Pat. No. US4186712A. RFI-suppressing ignition system for an internal combustion engine. Available at: https://patents.google.com/patent/US4186712A/en
  17. Tai, T.-T. Pat. No. US5603306A. Ignition cable means for eliminating inerference. Available at: https://patents.google.com/patent/US5603306
  18. Abramchuk, F., Kabanov, A., Shvydkiy, D. (2014). Analiz effektivnosti odnoiskrovoy i mnogoiskrovoy sistem zazhiganiya gazovyh dvigateley. Avtomobil'niy transport, 34, 28–31.
  19. Abramchuk, F., Kabanov, A., Shvydkiy, D. (2013). Metodika opredeleniya elektricheskih velichin sistemy iskrovogo zazhiganiya DVS. Avtomobil'niy transport, 33, 67–70.
  20. Francev, S. (2009). Uluchshenie pokazateley gazovyh DVS za schet racional'nogo vybora parametrov iskrovogo razryada sistemy zazhiganiya. Volgograd, 127.
  21. Tarahno, E. V., Zhernoklev, K. V., Tregubov, D. G., Kovregin, V. V. (2013). Teoriya razvitiya i prekrashcheniya goreniya. Kharkiv, 162.

Downloads

Published

2018-08-14

How to Cite

Shvydkyy, D. (2018). Development of a method for experimental investigation of combustion process in lean burn gas engines. Eastern-European Journal of Enterprise Technologies, 4(5 (94), 61–79. https://doi.org/10.15587/1729-4061.2018.140484

Issue

Section

Applied physics