Establishing the patterns in anode behavior of copper in phosphoric acid solutions when adding alcohols

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140554

Keywords:

electrochemical polishing, passive film, diffusion dissolution, pitting, anodic polarization, dimensional treatment

Abstract

We have investigated the anodic polarization dependences of the copper electrode in phosphate-alcoholic solutions. The dependences derived can be divided into regions, each of which corresponds to the course of certain electrochemical reactions within the specified range of potentials. The first region corresponds to the anodic dissolution of copper, the second region ‒ to the formation at the surface of copper of a passivating oxide-salt film and the diffusion regime of metal dissolution. Upon reaching the potential for the decomposition of water, the dissolution of a copper electrode is accompanied by the oxidation of Н2О molecules. We have established the relationship between patterns of copper dissolution and polarization dependences of the electrode. Electrochemical etching of copper is matched with the range of electrode potentials of 0‒0.8 V. Formation of an oxide-salt film at potentials of 1‒2 V predetermines the ionization of copper under diffusion mode and leads to the preferential dissolution of metal’s micro-irregularities with the formation of the shiny surface of the electrode. Shifting the anode potential towards magnitudes exceeding 2 V leads to the emergence of point etching at the surface of copper because of a local disruption in the continuity of a passive film. Adding ethanol to the solutions of phosphoric acid reduces current density of the anodic copper dissolution in the stationary area to the values of 0.2‒2 A∙dm–2. Ethanol helps obtain a shiny surface of copper. At (С2Н5ОН)>30 %, the polishing effect disappears. Butyl alcohol is an effective inhibitor of copper etching and in its presence ja reduces to 0.1‒1 A∙dm–2. Adding C4H9OН predetermines the formation of surface with a strong gloss and the minimum number of etching points. At (с(C4H9OН)>50 %, copper surface acquires a significant number of etching points. Inhibitory effect of glycerol is close to the action of butanol. The shape of the polarization dependence is predetermined by the C3H8O3 content in solution. When increasing с(C3H8O3)>20 %, polishing does not occur and the surface of the electrode has a matte appearance. The data obtained show that the anodic behavior of copper depends on the nature of an additive, which could be used to develop the polishing electrolytes or the dimensional copper treatment.

Author Biographies

Dar'ja Silchenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Department of technical electrochemistry

Alexei Pilipenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of technical electrochemistry

Hanna Pancheva, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of labor and environment protection

Olena Khrystych, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Lecturer

Department of special chemistry and chemical technology

Marina Chyrkina, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate professor

Department of special chemistry and chemical technology

Evgeny Semenov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of labor and environment protection

References

  1. Pilipenko, A. I., Pospelov, A. P., Kamarchuk, G. V., Bondarenko, I. S., Shablo, A. A., Bondarenko, S. I. (2011). Point-contact sensory nanostructure modeling. Functional materials, 18 (3), 324–327.
  2. Pospelov, A. P., Pilipenko, A. I., Kamarchuk, G. V., Fisun, V. V., Yanson, I. K., Faulques, E. (2014). A New Method for Controlling the Quantized Growth of Dendritic Nanoscale Point Contacts via Switchover and Shell Effects. The Journal of Physical Chemistry C, 119 (1), 632–639. doi: https://doi.org/10.1021/jp506649u
  3. Maizelis, A. A., Bairachniy, B. I., Trubnikova, L. V., Savitsky, B. A. (2012). The effect of architecture of Cu/Ni-Cu multilayer coatings on their microhardness. Functional Materials, 19 (2), 238–244.
  4. Maizelis, A., Bairachny, B. (2017). Voltammetric Analysis of Phase Composition of Zn-Ni Alloy Thin Films Electrodeposited from Weak Alkaline Polyligand Electrolyte. Journal of Nano- and Electronic Physics, 9 (5), 05010-1–05010-7. doi: https://doi.org/10.21272/jnep.9(5).05010
  5. Smirnova, O., Pilipenko, A., Pancheva, H., Zhelavskyi, A., Rutkovska, K. (2018). Study of anode processes during development of the new complex thiocarbamide­citrate copper plating electrolyte. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 47–52. doi: https://doi.org/10.15587/1729-4061.2018.123852
  6. Maizelis, A. A., Bairachnyi, B. I., Tul’skii, G. G. (2016). Contact Displacement of Copper at Copper Plating of Carbon Steel Parts. Surface Engineering and Applied Electrochemistry, 54 (1), 12–19. doi: https://doi.org/10.3103/s1068375518010106
  7. Ahmed, A. M., Abd El-Haleem, S. M., Saleh, M. G. A., Abdel-Rahman, A. A.-H. (2013). Copper electropolishing in the presence of purine derivatives. Asian Journal of Chemistry, 25 (3), 1512–1520. doi: https://doi.org/10.14233/ajchem.2013.13125
  8. Taha, A. A., Ahmed, A. M., Rahman, H. H. A., Abouzeid, F. M. (2013). The effect of surfactants on the electropolishing behavior of copper in orthophosphoric acid. Applied Surface Science, 277, 155–166. doi: https://doi.org/10.1016/j.apsusc.2013.04.017
  9. Elmalah, N. M., Abd Elhaliem, S. M., Ahmed, A. M., Ghozy, S. M. (2012). Effect of some organic aldehydes on the electropolishing of copper in phosphoric acid. International Journal of Electrochemical Science, 7, 7720–7739.
  10. Batouti, M. E., Ahmed, A.-M. M. (2015). Study of electrochemical behavior of copper in presence of dicarboxylic and tricarboxylic acids. Revue Roumaine de Chimie, 60 (11-12), 1047.
  11. Liu, S.-H., Shieh, J.-M., Chen, C., Hensen, K., Cheng, S.-S. (2006). Roles of Additives in Damascene Copper Electropolishing. Journal of The Electrochemical Society, 153 (6), C428. doi: https://doi.org/10.1149/1.2193348
  12. Du, B., Suni, I. I. (2004). Mechanistic Studies of Cu Electropolishing in Phosphoric Acid Electrolytes. Journal of The Electrochemical Society, 151 (6), C375. doi: https://doi.org/10.1149/1.1740783
  13. Attia, A. A., Elmelegy, E. M., El-Batouti, M., Ahmed, A.-M. M. (2016). Studying Copper Electropolishing Inhibition in Presence of Some Organic Alcohols. Portugaliae Electrochimica Acta, 34 (2), 105–118. doi: https://doi.org/10.4152/pea.201602105
  14. wad, A. M., Ghany, N. A. A., Dahy, T. M. (2010). Removal of tarnishing and roughness of copper surface by electropolishing treatment. Applied Surface Science, 256 (13), 4370–4375. doi: https://doi.org/10.1016/j.apsusc.2010.02.033
  15. Abdel-Haleem, S. M., Ahmed, A. M., Shadad, M. I. (2013). Kinetic study of anodic corrosion of copper in phosphoric acid and effects of some phenols derivatives. Asian Journal of Chemistry, 25 (17), 9693–9700. doi: https://doi.org/10.14233/ajchem.2013.15132
  16. Du, B., Ivar suni, I. (2004). Water diffusion coefficients during copper electropolishing. Journal of Applied Electrochemistry, 34 (12), 1215–1219. doi: https://doi.org/10.1007/s10800-004-3303-7
  17. Taha, A. A. (2000). Study of the effect of ethylene glycol and glycerol on the rate of electropolishing of copper by the rotating disk technique. Anti-Corrosion Methods and Materials, 47 (2), 94–104. doi: https://doi.org/10.1108/00035590010316458
  18. Vidal, R. (1995). Copper Electropolishing in Concentrated Phosphoric Acid. Journal of The Electrochemical Society, 142 (8), 2689. doi: https://doi.org/10.1149/1.2050075
  19. Pancheva, H., Reznichenko, A., Miroshnichenko, N., Sincheskul, A., Pilipenko, A., Loboichenko, V. (2017). Study into the influence of concentration of ions of chlorine and temperature of circulating water on the corrosion stability of carbon steel and cast iron. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 59–64. doi: https://doi.org/10.15587/1729-4061.2017.108908
  20. Pilipenko, A., Pancheva, H., Reznichenko, A., Myrgorod, O., Miroshnichenko, N., Sincheskul, A. (2017). The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 21–28. doi: https://doi.org/10.15587/1729-4061.2017.95989
  21. Edwards, J. (1953). The Mechanism of Electropolishing of Copper in Phosphoric Acid Solutions. Journal of The Electrochemical Society, 100 (8), 223C. doi: https://doi.org/10.1149/1.2781129
  22. Huang, C., Chen, J., Sun, M. (2017). Electropolishing Behaviour of 73 Brass in a 70 vol % H3PO4 Solution by Using a Rotating Cylinder Electrode (RCE). Metals, 7 (1), 30. doi: https://doi.org/10.3390/met7010030
  23. Pointu, B., Braizaz, M., Poncet, P., Rousseau, J. (1981). Photoeffects on the Cu/H3PO4 interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 122, 111–131. doi: https://doi.org/10.1016/s0022-0728(81)80144-1
  24. Van Gils, S., Le Pen, C., Hubin, A., Terryn, H., Stijns, E. (2007). Electropolishing of Copper in H[sub 3]PO[sub 4]. Journal of The Electrochemical Society, 154 (3), C175. doi: https://doi.org/10.1149/1.2429044
  25. Kung, T.-M., Liu, C.-P., Chang, S.-C., Chen, K.-W., Wang, Y.-L. (2010). Effect of Cu-Ion Concentration in Concentrated H[sub 3]PO[sub 4] Electrolyte on Cu Electrochemical Mechanical Planarization. Journal of The Electrochemical Society, 157 (7), H763. doi: https://doi.org/10.1149/1.3425807
  26. Li, D., Li, N., Xia, G., Zheng, Z., Wang, J., Xiao, N. et. al. (2013). An in-situ study of copper electropolishing in phosphoric acid solution. International Journal of Electrochemical Science, 8, 1041–1046.
  27. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  28. Sincheskul, A., Pancheva, H., Loboichenko, V., Avina, S., Khrystych, O., Pilipenko, A. (2017). Design of the modified oxide-nickel electrode with improved electrical characteristics. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 23–28. doi: https://doi.org/10.15587/1729-4061.2017.112264
  29. Ghali, E. I., Potvin, R. J. A. (1972). The mechanism of phosphating of steel. Corrosion Science, 12 (7), 583–594. doi: https://doi.org/10.1016/s0010-938x(72)90118-7
  30. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
  31. Sankara Narayanan, T. S. N. (2005). Surface Pretreatment by Phosphate Conversion Coatings – A Review. Reviews on Advanced Materials Science, 9, 130–177.

Downloads

Published

2018-08-14

How to Cite

Silchenko, D., Pilipenko, A., Pancheva, H., Khrystych, O., Chyrkina, M., & Semenov, E. (2018). Establishing the patterns in anode behavior of copper in phosphoric acid solutions when adding alcohols. Eastern-European Journal of Enterprise Technologies, 4(6 (94), 35–41. https://doi.org/10.15587/1729-4061.2018.140554

Issue

Section

Technology organic and inorganic substances