Calculation of polycondensation equilibria in aqueous solutions of silica and silicates

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140561

Keywords:

soluble silicates, amino silicates, silicic acids, anomalous rheology, polycondensation

Abstract

We proposed some complication of the previously used calculation model to expand capabilities of the theoretical description of acid-base and polycondensation equilibria in water-silicate systems. A fuller account of the balance of Н+ ions enables the mathematical modeling of a structure and physicochemical properties of aqueous solutions not only of soluble silicates, but also of silicic acid, and with the same set of introductory thermodynamic parameters. The basis of the modified calculation model is a numerical solution of the system of eight linear and nonlinear equations by the Newton method.

We used the new model to calculate parameters of the molecular mass distribution of silicon-oxygen species and pH value in aqueous solutions of silicic acid, as well as alkaline silicates and silicates of amines (amino silicates). We determined ranges of values of input thermodynamic parameters, which make possible self-consistent description of three non-trivial experimentally observed effects. These are a rheological anomaly in solutions of amino silicates, absence of this anomaly in solutions of alkaline silicates, and predominantly monomeric nature of silicic acid in a low-concentrated aqueous solution of silica. We showed that a self-consistent description of three effects is possible only if the sum of indexes of dissociation constants (pKa) and polycondensation constants (pKp) of a silanol group, is less than 11.6. We also calculated concentrations of hydrolytic and polycondensation structures in compositions of anions and cations for these solutions and analyzed dependences of these concentrations on parameters of the calculated model. In particular, we showed that the modification of the calculated model leads to a significant increase in calculated values of pH and a degree of dissociation of silanol groups for a silica solution, while the average degree of polymerization stays almost unchanged. In addition, we found that the degree of depolymerization of a siloxane bond may be nonmonotonically dependent on pKa value in solutions of amino silicates.

Author Biographies

Nikolai Maliavski, National Research Moscow State University of Civil Engineering Yaroslavskoye highway, 26, Moscow, Russia, 129337

PhD, Associate Professor

Department of construction materials and materials science

Olga Zhuravlova, Corporation «SIIG» Volodymyra Monomakha str., 25-A2, Dnipro, Ukraine, 49000

PhD, Deputy Director

References

  1. Iler, R. K. (1979). The Chemistry of Silica. Wiley, 886.
  2. Maliavski, N., Tchekounova, E., Dushkin, O. (1994). Silica fibers obtained from aminosilicate solutions with a reversible spinnability. Journal of Sol-Gel Science and Technology, 2 (1-3), 503–505. doi: https://doi.org/10.1007/bf00486298
  3. Malyavskiy, N. I., Pokid'ko, B. V. (2013). Polikondensacionnye ravnovesiya i reologicheskaya anomaliya v vodnyh rastvorah silikatov. Internet-vestnik VolgGASU. Ser.: Politematicheskaya, 4 (29). Available at: http://vestnik.vgasu.ru/attachments/MalyavskiyPokidko-2013_4(29).pdf
  4. Toutorski, I. A., Tkachenko, T. E., Maliavski, N. I. (1998). Structural and chemical modification of polydiene latexes by gel derived silica. Journal of Sol-Gel Science and Technology, 13 (1-3), 1057–1060. doi: https://doi.org/10.1023/a:1008628919412
  5. Yang, X., Zhu, W., Yang, Q. (2007). The Viscosity Properties of Sodium Silicate Solutions. Journal of Solution Chemistry, 37 (1), 73–83. doi: https://doi.org/10.1007/s10953-007-9214-6
  6. Yang, X., Zhang, S. (2016). Characterizing and Modeling the Rheological Performances of Potassium Silicate Solutions. Journal of Solution Chemistry, 45 (12), 1890–1901. doi: https://doi.org/10.1007/s10953-016-0540-4
  7. Malyavskiy, N. I. (2003). Shchelochnosilikatnye utepliteli. Svoystva i himicheskie osnovy proizvodstva. Rossiyskiy himicheskiy zhurnal, 4, 39–45.
  8. Falcone Jr., J. S., Bass, J. L., Krumrine, P. H., Brensinger, K., Schenk, E. R. (2010). Characterizing the Infrared Bands of Aqueous Soluble Silicates. The Journal of Physical Chemistry A, 114 (7), 2438–2446. doi: https://doi.org/10.1021/jp908113s
  9. Vidal, L., Joussein, E., Colas, M., Cornette, J., Sanz, J., Sobrados, I. et. al. (2016). Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 503, 101–109. doi: https://doi.org/10.1016/j.colsurfa.2016.05.039
  10. Maliavski, N., Zhuravlova, O., Denysiuk, O. (2017). The rheological anomaly in water-silicate systems: a possible thermodynamic explanation. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 23–28. doi: https://doi.org/10.15587/1729-4061.2017.105837
  11. Gorbach, V. A., Potapov, V. V., Kashpura, V. N. et. al. (2006). Silicic acid polymerization in hydrothermal solution. Proceedings, 31st Workshop on Geothermal Reservoir Engineering. SGP-TR-179. Stanford, California.
  12. Belton, D. J., Deschaume, O., Perry, C. C. (2012). An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS Journal, 279 (10), 1710–1720. doi: https://doi.org/10.1111/j.1742-4658.2012.08531.x
  13. Nichita, D. V. (2018). New unconstrained minimization methods for robust flash calculations at temperature, volume and moles specifications. Fluid Phase Equilibria, 466, 31–47. doi: https://doi.org/10.1016/j.fluid.2018.03.012
  14. Shields, G., Seybold, P. (2013). Computational Approaches for the Prediction of pKa Values. CRC Press, 175. doi: https://doi.org/10.1201/b16128
  15. Alvarez, R., Sparks, D. L. (1985). Polymerization of silicate anions in solutions at low concentrations. Nature, 318 (6047), 649–651. doi: https://doi.org/10.1038/318649a0
  16. Weber, C. F., Hunt, R. D. (2003). Modeling Alkaline Silicate Solutions at 25 °C. Industrial & Engineering Chemistry Research, 42 (26), 6970–6976. doi: https://doi.org/10.1021/ie0303449
  17. Provis, J. L., Duxson, P., Lukey, G. C., Separovic, F., Kriven, W. M., van Deventer, J. S. J. (2005). Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions. Industrial & Engineering Chemistry Research, 44 (23), 8899–8908. doi: https://doi.org/10.1021/ie050700i

Downloads

Published

2018-08-14

How to Cite

Maliavski, N., & Zhuravlova, O. (2018). Calculation of polycondensation equilibria in aqueous solutions of silica and silicates. Eastern-European Journal of Enterprise Technologies, 4(6 (94), 48–55. https://doi.org/10.15587/1729-4061.2018.140561

Issue

Section

Technology organic and inorganic substances