Studying and designing improved coatings for labyrinth seals of gas­turbine engine turbines

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140912

Keywords:

газотурбінний двигун, коефіцієнт корисної дії, радіальний зазор, лабіринтне ущільнення, легування, витрати газу

Abstract

An analysis of improving efficiency of aircraft engine turbines by means of improvement of composition of sealing coatings used in labyrinth seals was made. It was established that a number of contradictory requirements to properties of such coatings are imposed at the initial stage of engine running-in and during further operation. Main types of damage of above coatings used in the design of labyrinth seals during operation of gas turbine engines were shown. In connection with the necessity of raising temperature of gases in turbines of aircraft engines, it was proposed to additionally dope the serial nickel-based coatings with yttrium-containing master alloys. The results of study of influence of doping of the wearing-in sealing coatings on operating properties in conditions of action of a high-temperature gas flow were presented. It was found that doping of the KNA-82 serial coating with a multicomponent Co-Ni-Cr-Al-Y master alloy is the most rational solution.

It was established that the use of the developed coating in a temperature range of 1,100...1,200 °C makes it possible to reduce specific consumption of fuel by aircraft engines by improving turbine efficiency and prevent wear of the end faces of ridges of the rotor labyrinth seal. Based on simulation of flow in the labyrinth seal clearance by numerical method, it was shown that the use of the developed coating materials in seals of the compressor turbine and the free turbine makes it possible to reduce amount of cooling air leakage into the turbine air-gas channel by reducing wear of tops of the labyrinth rotor seal ridge

Author Biographies

Viktor Greshta, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Professor

Department of Physical Materials Science

Daria Tkach, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD

Department of Physical Materials Science

Eugene Sotnikov, Motor Sich JSC Motorostroiteley аve., 15, Zaporizhzhia, Ukraine, 69068

Head of workshop No. 3

Dmytro Pavlenko, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of aircraft engine technologies

Olexandr Klymov, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Physical Materials Science

References

  1. Kofman, V. M. (2012). Opredelenie koefficienta poleznogo deystviya turbiny GTD po parametram neravnomernyh gazovyh potokov. Vestnik Ufimskogo gosudarstvennogo aviacionnogo tekhnicheskogo universiteta, 16 (5 (50)), 39–40.
  2. Sporer, D., Wilson, S., Dorfman, M. (2010). Ceramics for Abradable Shroud Seal Applications. Ceramic Engineering and Science Proceedings, 39–54. doi: https://doi.org/10.1002/9780470584293.ch5
  3. Chupp, R. E., Hendricks, R. C., Lattime, S. B., Steinetz, B. M. (2006). Sealing in turbomachinery. NASA/TM-2006-214341, 62.
  4. Bondarchuk, P. V., Tisarev, A. Yu., Lavrushin, M. V. (2012). Razrabotka metodiki rascheta sistemy upravleniya radial'nymi zazorami v turbine GTD. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 3 (34), 272–278.
  5. Inozemcev, A. A., Bazhin, S. V., Snitko, M. A. (2012). Voprosy optimizacii radial'nyh zazorov TVD aviacionnogo GTD. Vestnik dvigatelestroeniya, 2, 149–154.
  6. Inozemcev, A. A., Sandrackiy, V. L. (2006). Gazoturbinnye dvigateli. Moscow, 1204.
  7. Komarov, O. A., Dmitriev, S. Yu., Dautov, D. R., Ossiala, V. B. A. (2017). Poteri KPD v turbine vysokogo davleniya s bandazhirovannoy rabochey lopatkoy. Vestnik Ufimskogo gosudarstvennogo aviacionnogo tekhnicheskogo universiteta, 21 (2 (76)), 70–75.
  8. Ma, X., Matthews, A. (2009). Evaluation of abradable seal coating mechanical properties. Wear, 267 (9-10), 1501–1510. doi: https://doi.org/10.1016/j.wear.2009.03.044
  9. Gao, S., Xue, W., Duan, D., Li, S. (2016). Tribological behaviors of turbofan seal couples from friction heat perspective under high-speed rubbing condition. Friction, 4 (2), 176–190. doi: https://doi.org/10.1007/s40544-016-0114-x
  10. Karpinos, B. S., Korovin, A. V., Lobun'ko, A. P., Vedishcheva, M. Yu. (2014). Ekspluatacionnye povrezhdeniya turboreaktivnyh dvuhkonturnyh aviacionnyh dvigateley s forsazhnoy kameroy sgoraniya. Vestnik dvigatelestroeniya, 1.
  11. Fois, N., Watson, M., Marshall, M. (2016). The influence of material properties on the wear of abradable materials. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231 (2), 240–253. doi: https://doi.org/10.1177/1350650116649528
  12. Hardwicke, C. U., Lau, Y.-C. (2013). Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review. Journal of Thermal Spray Technology, 22 (5), 564–576. doi: https://doi.org/10.1007/s11666-013-9904-0
  13. Faraoun, H. I., Seichepine, J. L., Coddet, C., Aourag, H., Zwick, J., Hopkins, N. et. al. (2006). Modelling route for abradable coatings. Surface and Coatings Technology, 200 (22-23), 6578–6582. doi: https://doi.org/10.1016/j.surfcoat.2005.11.105
  14. Voevodin, A. A., Erohin, A. L., Spasskiy, S. E. (1991). Model' vybora skhemy mnogosloynogo ionno-plazmennogo pokrytiya na osnove rascheta napryazheniy v ego sloyah. Poverhnost'. Fizika, himiya, mekhanika, 9, 78–84.
  15. Dvirnik, Ya. V., Pavlenko, D. V. (2014). Metodika modelirovaniya techeniya potoka v osevom kompressore GTD chislennym metodom. Vestnik dvigatelestroeniya, 1, 34–40.
  16. Koval', V. A., Anurov, Yu. M., Belyaeva, S. O., Kovaleva, E. A., Yaroslavcev, S. V. (2009). Chislenniy analiz vozmozhnostey 2-D i 3-D metodov proektirovaniya osevyh turbomashin. Eastern-European Journal of Enterprise Technologies, 4 (5 (40)), 12–18. Available at: http://journals.uran.ua/eejet/article/view/21063/19508
  17. Bielikov, S. B., Hreshta, V. L., Tkach, D. V. et. al. (2017). Otsinka ekspluatatsiynoi nadiinosti teplozakhysnykh ushchilniuvalnykh pokryttiv detalei hazoturbinnykh dvyhuniv. Novi materialy i tekhnolohiyi v metalurhii ta mashynobuduvanni, 2, 14–17.
  18. Greshta, V. L., Tkach, D. V., Klimov, A. V., Sotnikov, E. G., Lekhovicer, Z. V., Stepanova, L. P. (2016). Issledovanie fazovogo sostava zharostoykih uplotnitel'nyh pokrytiy, primenyaemyh v GTD. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 8, 113–121.
  19. Umanskiy, A. P., Polyarus, E. N., Kostenko, A. D., Terent'ev, A. E. (2012). Vliyanie sostava pokrytiy na osnove intermetallidov nikelya na mekhanizmy ih iznashivaniya v usloviyah vysokotemperaturnyh triboispytaniy. Problemy trybolohiyi, 3, 123–127.
  20. Makarov, A., Zaytsev, N. (2015). Engineering and theoretical problems of labyrinth seals application in high-speed rotor machines. Perm National Research Polytechnic University Aerospace Engineering Bulletin, 42, 61–81. doi: https://doi.org/10.15593/2224-9982/2015.42.05
  21. Reznik, S. B., Bandurko, E. A. (2013). Raschetno-eksperimental'naya ocenka effektivnosti razlichnyh tipov labirintnyh uplotneniy. Vestnik dvigatelestroeniya, 10 (107), 189–193.

Downloads

Published

2018-08-21

How to Cite

Greshta, V., Tkach, D., Sotnikov, E., Pavlenko, D., & Klymov, O. (2018). Studying and designing improved coatings for labyrinth seals of gas­turbine engine turbines. Eastern-European Journal of Enterprise Technologies, 4(12 (94), 56–63. https://doi.org/10.15587/1729-4061.2018.140912

Issue

Section

Materials Science