A study of initial stages for formation of carbon condensates on copper

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140970

Keywords:

carbon condensates, graphene/copper system, CVD process, optical microscopy, computer image processing, phase composition

Abstract

In the CVD method, samples of carbon condensates were obtained under special conditions (low substrate temperature and short growth times). The use of special technological conditions makes it possible to study the initial stages of growth of graphene layers. To analyze the influence of the microinhomogeneities of the copper substrate on growth conditions, various modes of its electrochemical polishing were used in the study. The structural state of the surface was studied using computer processing of digital images of a surface with color segmentation. A metallographic analysis of more than 70 samples was carried out and three main structural elements of the initial stage of growth of graphene layers were identified on the basis of computer image processing during condensation. These are graphene layers, sections of a copper substrate and a cluster of atoms with a structural state different from the graphene (presumably amorphous). It has been established that preparation of the substrate surface should be attributed to the most important technological operations for obtaining a high-quality graphene coating. It has been found that the use of multicomponent electrolytes during the polishing of the copper substrate makes it possible to increase the uniformity in the dimensions of the structural elements of the surface roughness. This leads to an increase in the surface area of the formation of graphene layers already during the initial stages of growth (at a relatively low process temperature of 700 °C).

The obtained results testify to the prospects of using multistage image analysis (using the clustering method) to optimize the technological regimes for obtaining the “carbon condensate/substrate” systems, taking into account the initial roughness of the latter

Author Biographies

Yu Dai, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Department of Materials Science

Igor Kolupaev, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Oleg Sоbоl, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science

References

  1. Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi: https://doi.org/10.1007/s11249-011-9747-0
  2. Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi: https://doi.org/10.3103/s1063457616020040
  3. Grigoriev, S. N., Sobol, O. V., Beresnev, V. M., Serdyuk, I. V., Pogrebnyak, A. D., Kolesnikov, D. A., Nemchenko, U. S. (2014). Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. Journal of Friction and Wear, 35 (5), 359–364. doi: https://doi.org/10.3103/s1068366614050067
  4. Vasyliev, M. O., Mordyuk, B. M., Sidorenko, S. I., Voloshko, S. M., Burmak, A. P., Kindrachuk, M. V. (2016). Synthesis of Deformation-Induced Nanocomposites on Aluminium D16 Alloy Surface by Ultrasonic Impact Treatment. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 38 (4), 545–563. doi: https://doi.org/10.15407/mfint.38.04.0545
  5. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: https://doi.org/10.1134/s1063785016090108
  6. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024–1–02024–7. doi: https://doi.org/10.21272/jnep.8(2).02024
  7. Sobol’, O. V. (2007). Nanostructural ordering in W-Ti-B condensates. Physics of the Solid State, 49 (6), 1161–1167. doi: https://doi.org/10.1134/s1063783407060236
  8. Song, T., Jiang, X., Shao, Z., Mo, D., Zhu, D., Zhu, M. et. al. (2017). Interfacial microstructure and mechanical properties of diffusion-bonded joints of titanium TC4 (Ti-6Al-4V) and Kovar (Fe-29Ni-17Co) alloys. Journal of Iron and Steel Research, International, 24 (10), 1023–1031. doi: https://doi.org/10.1016/s1006-706x(17)30149-8
  9. Krause-Rehberg, R., Pogrebnyak, A. D., Borisyuk, V. N., Kaverin, M. V., Ponomarev, A. G., Bilokur, M. A. et. al. (2013). Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. The Physics of Metals and Metallography, 114 (8), 672–680. doi: https://doi.org/10.1134/s0031918x13080061
  10. Vacuum-plasma coatings based on the multielement nitrides / Azarenkov N. A., Sobol O. V., Beresnev V. M., Pogrebnyak A. D., Kolesnikov D. A. et. al. // Metallofizika i Noveishie Tekhnologii. 2013. Vol. 35, Issue 8. P. 1061–1084.
  11. Pohrelyuk, I. M., Kindrachuk, M. V., Lavrys’, S. M. (2016). Wear Resistance of VT22 Titanium Alloy After Nitriding Combined with Heat Treatment. Materials Science, 52 (1), 56–61.doi: https://doi.org/10.1007/s11003-016-9926-0
  12. Zubkov, A. I., Zubarev, E. N., Sobol’, O. V., Hlushchenko, M. A., Lutsenko, E. V. (2017). Structure of vacuum Cu–Ta condensates. Physics of Metals and Metallography, 118 (2), 158–163. doi: https://doi.org/10.1134/s0031918x17020156
  13. Kausar, A. (2016). Adhesion, morphology, and heat resistance properties of polyurethane coated poly(methyl methacrylate)/fullerene-C60 composite films. Composite Interfaces, 24 (7), 649–662. doi: https://doi.org/10.1080/09276440.2017.1257251
  14. Hou, C., Zhang, M., Halder, A., Chi, Q. (2017). Graphene directed architecture of fine engineered nanostructures with electrochemical applications. Electrochimica Acta, 242, 202–218. doi: https://doi.org/10.1016/j.electacta.2017.04.117
  15. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56 (8), 1178–1271. doi: https://doi.org/10.1016/j.pmatsci.2011.03.003
  16. Tsen, A. W., Brown, L., Havener, R. W., Park, J. (2012). Polycrystallinity and Stacking in CVD Graphene. Accounts of Chemical Research, 46 (10), 2286–2296. doi: https://doi.org/10.1021/ar300190z
  17. Chu, P. K., Li, L. (2006). Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 96 (2-3), 253–277. doi: https://doi.org/10.1016/j.matchemphys.2005.07.048
  18. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446 (7131), 60–63. doi: https://doi.org/10.1038/nature05545
  19. Lee, C., Wei, X., Kysar, J. W., Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321 (5887), 385–388. doi: https://doi.org/10.1126/science.1157996
  20. Jia, C., Jiang, J., Gan, L., Guo, X. (2012). Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates. Scientific Reports, 2 (1). doi: https://doi.org/10.1038/srep00707
  21. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T. et. al. (2008). Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320 (5881), 1308–1308. doi: https://doi.org/10.1126/science.1156965
  22. Loh, K. P., Bao, Q., Ang, P. K., Yang, J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20 (12), 2277. doi: https://doi.org/10.1039/b920539j
  23. Mouras, S., Hamm, A., Djurado, D., Cousseins, J. C. (1987). Synthesis of first stage graphite intercalation compounds with fluorides. Revue de chimie minerale, 24 (5), 572–582.
  24. Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., Pei, S.-S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93 (11), 113103. doi: https://doi.org/10.1063/1.2982585
  25. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V. et. al. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9 (1), 30–35. doi: https://doi.org/10.1021/nl801827v
  26. Li, X., Cai, W., Colombo, L., Ruoff, R. S. (2009). Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 9 (12), 4268–4272. doi: https://doi.org/10.1021/nl902515k
  27. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D. et. al. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324 (5932), 1312–1314. doi: https://doi.org/10.1126/science.1171245
  28. Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E., Lyding, J. W. (2011). Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters, 11 (11), 4547–4554. doi: https://doi.org/10.1021/nl201566c
  29. Geng, D., Wu, B., Guo, Y., Huang, L., Xue, Y., Chen, J. et. al. (2012). Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proceedings of the National Academy of Sciences, 109 (21), 7992–7996. doi: https://doi.org/10.1073/pnas.1200339109
  30. Regmi, M., Chisholm, M. F., Eres, G. (2012). The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu. Carbon, 50 (1), 134–141. doi: https://doi.org/10.1016/j.carbon.2011.07.063
  31. Kim, H., Mattevi, C., Calvo, M. R., Oberg, J. C., Artiglia, L., Agnoli, S. et. al. (2012). Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano, 6 (4), 3614–3623. doi: https://doi.org/10.1021/nn3008965
  32. Wang, H., Wang, G., Bao, P., Yang, S., Zhu, W., Xie, X., Zhang, W.-J. (2012). Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. Journal of the American Chemical Society, 134 (8), 3627–3630. doi: https://doi.org/10.1021/ja2105976
  33. Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X. et. al. (2011). Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano, 5 (4), 3385–3390. doi: https://doi.org/10.1021/nn200854p
  34. Kolypaev, I. M., Sobol’, O. V., Myrakhovskiy, O. V., Levitsky, V. S., Larinova, T. V., Koltsova, T. S., Sobol, V. O. (2016). Estimation the uniformity of a polygraphene coating on copper (GCC). 2016 International Conference on Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2016.7757274
  35. Chen, K., Dzhiblin, P., Irving, A. (2001). MATLAB v matematicheskih issledovaniyah. Moscow: Mir, 346.
  36. Gonsales, R., Vuds, R., Eddins, S. (2006). Cifrovaya obrabotka izobrazheniy v srede MATLAB. Moscow: Tekhnosfera, 616.
  37. Madaan, A., Bhatia, M., Hooda, M. (2018). Implementation of Image Compression and Cryptography on Fractal Images. Lecture Notes in Networks and Systems, 49–61. doi: https://doi.org/10.1007/978-981-10-8360-0_5
  38. Kolupaev, I., Sobol, O., Murakhovski, A., Koltsova, T., Kozlova, M., Sobol, V. (2016). Use of computer processing by the method of multi-threshold cross sections for the analysis of optical images of fractal surface microstructure. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 29–35. doi: https://doi.org/10.15587/1729-4061.2016.81255
  39. Sobol’, O. V., Kolupaev, I. N., Murahovskiy, A. V., Levitskiy, V. S. et. al. (2016). Express Method of Analysis Morphological Parameters of Graphene Coatings on a Copper Substrate. Journal of Nano- and Electronic Physics, 8 (4 (1)), 04013-1–04013-5. doi: https://doi.org/10.21272/jnep.8(4(1)).04013

Downloads

Published

2018-08-27

How to Cite

Dai, Y., Kolupaev, I., & Sоbоl O. (2018). A study of initial stages for formation of carbon condensates on copper. Eastern-European Journal of Enterprise Technologies, 4(12 (94), 49–55. https://doi.org/10.15587/1729-4061.2018.140970

Issue

Section

Materials Science