Assessment of the stability of aquatic ecosystems development on the basis of indicators of the macrophytes fluctuating asymmetry

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.141055

Keywords:

biomonitoring, macrophytes, water quality, surface waters, biodiversity, fluctuating asymmetry

Abstract

In order to implement the provisions of the EU Water Framework Directive 2000/60/EU, the theoretical and methodological principles of applying the method of instantaneous biomonitoring of the stability of aquatic ecosystems development on the basis of evaluation of macrophyte fluctuating asymmetry indicators were proposed. The research found that the violation of the stable development of ecosystems, including the influence of anthropogenic factors, causes deviation in the morphological parameters of higher aquatic plants. Violations of the symmetry of individual parts, namely morphogenetic changes in macrophytes, are closely related to the coefficients of ecological stabilization of landscapes and the water quality categories. The qualitative assessment of the environment in terms of fluctuating asymmetry of indicator plants is justified in relation to salt composition, trophoscopic and toxicity indices. The particular sensitivity of this method has been found in relation to the content of heavy metals in the mules and coastal soils at concentrations below the established maximum permissible concentrations (MPC). The regularities of the distribution of the integral fluctuating asymmetry indices are determined and a three-dimensional model of the asymmetry formation in a leaf of Potamogeton perfoliatus is established, depending on the stability of the landscapes and water quality. They represent the basic short-term component of the integrated system of biomonitoring of sustainable development of aquatic ecosystems and allow clarifying, correcting and generalizing the existing methods for environmental assessment of water quality. The proposed technique allows strengthening the role of the biological component in conducting an environmental assessment of the quality of surface water and ensures the implementation of the EU Water Framework Directive 2000/60/EU on the territory of Eastern Europe

Author Biographies

Lyudmila Romanchuk, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Doctor of Agricultural Sciences, Professor

Department of Forest Ecology and Life Safety

Tatyana Fedonyuk, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Doctor of Agricultural Sciences, Associate Professor

Department of Forest Ecology and Life Safety

Viktor Pazych, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD

Department of Forest Ecology and Life Safety

Roman Fedonyuk, Zhytomyr National Agroecological University Korolova str., 39, Zhytomyr, Ukraine, 10008

Director

Botanical Garden of the Zhytomyr National Agroecological University

Galina Khant, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD

Department of Foreign Languages

References

  1. Møller, A. P., Dongen, S. V. (2003). Ontogeny of Asymmetry and Compensational Growth in Elm Ulmus glabra Leaves under Different Environmental Conditions. International Journal of Plant Sciences, 164 (4), 519–526.doi: https://doi.org/10.1086/374197
  2. Parsons, P. A. (1990). Fluctuating asymmetry: an epigenetic measure of stress. Biological Reviews, 65 (2), 131–145. doi: https://doi.org/10.1111/j.1469-185x.1990.tb01186.x
  3. Kozlov, M. V., Wilsey, B. J., Koricheva, J., Haukioja, E. (1996). Fluctuating Asymmetry of Birch Leaves Increases Under Pollution Impact. The Journal of Applied Ecology, 33 (6), 1489. doi: https://doi.org/10.2307/2404787
  4. Lens, Molenberghs (1999). Mixture analysis of asymmetry: modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecology Letters, 2 (6), 387–396. doi: https://doi.org/10.1046/j.1461-0248.1999.00103.x
  5. Zorina, A. A. (2012). Metody statisticheskogo analiza fluktuiruyushchey asimmetrii. Principy ekologii, 3, 24–47.
  6. Graham, J. H., Shimizu, K., Emlen, J. M., Freeman, D. C., Merkel, J. (2003). Growth models and the expected distribution of fluctuating asymmetry. Biological Journal of the Linnean Society, 80 (1), 57–65. doi: https://doi.org/10.1046/j.1095-8312.2003.00220.x
  7. Hagen, S. B., Ims, R. A., Yoccoz, N. G., Sørlibråten, O. (2007). Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens). Plant Ecology, 195 (2), 157–163. doi: https://doi.org/10.1007/s11258-007-9312-y
  8. Fair, J. M., Breshears, D. D. (2005). Drought stress and fluctuating asymmetry in Quercus undulata leaves: confounding effects of absolute and relative amounts of stress? Journal of Arid Environments, 62 (2), 235–249. doi: https://doi.org/10.1016/j.jaridenv.2004.11.010
  9. Dongen, S. V. (2006). Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. Journal of Evolutionary Biology, 19 (6), 1727–1743. doi: https://doi.org/10.1111/j.1420-9101.2006.01175.x
  10. Andalo, C., Bazin, A., Shykoff, J. A. (2000). Is There a Genetic Basis for Fluctuating Asymmetry and Does it Predict Fitness in the Plant Lotus corniculatus Grown in Different Environmental Conditions? International Journal of Plant Sciences, 161 (2), 213–220. doi: https://doi.org/10.1086/314253
  11. Tracy, M., Freeman, D. C., Emlen, J. M., Graham, J. H., Hough, R. A. (1995). Developmental instability as a biomonitor of environmental stress: an illustration using plants and macroalgae. In Biomonitors and Biomarkers as Indicators of Environmental Change. New York, NY, USA.
  12. Vlasova, E. A., Belova, P. A., Fedorova, T. A., Shcherbakov, A. V. (2006). Fluktuiruyushchaya asimmetriya lista rdesta pronzennolistnogo kak indikacionnyy pokazatel' kachestva vodnoy sredy. Gidrobotanika 2005: materialy VI Vserossiyskoy shkoly-konferencii po vodnym makrofitam. Yaroslavl': VNII biologii vnutrennih vod.
  13. Goulder, R. (1970). Day-Time Variations in the Rates of Production by Two Natural Communities of Submerged Freshwater Macrophytes. The Journal of Ecology, 58 (2), 521. doi: https://doi.org/10.2307/2258287
  14. Fedoniuk, T. P. (2018). Morphogenetic analysis of the stability of water macrophytes development in the short-term biomonitoring of water ecosystems of the Polissya of Ukraine. Balanced Nature Using, 1, 90–98. Available at: http://natureus.org.ua/repec/archive/1_2018/17.pdf
  15. Mal, T. K., Adorjan, P., Corbett, A. L. (2002). Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environmental Pollution, 120 (2), 307–311. doi: https://doi.org/10.1016/s0269-7491(02)00146-x
  16. Ambo-Rappe, R., Lajus, D. L., Schreider, M. J. (2008). Increased heavy metal and nutrient contamination does not increase fluctuating asymmetry in the seagrass Halophila ovalis. Ecological Indicators, 8 (1), 100–103. doi: https://doi.org/10.1016/j.ecolind.2006.12.004
  17. Ambo-Rappe, R., Lajus, D. L., Schreider, M. J. (2007). Translational Fluctuating Asymmetry and Leaf Dimension in Seagrass,Zostera capricorniAschers in a Gradient of Heavy Metals. Environmental Bioindicators, 2 (2), 99–116. doi: https://doi.org/10.1080/15555270701457752
  18. Romanchuk, L. D., Fedonuk, T. P., Khant, G. O. (2017). Radio monitoring of plant products and soils of Polesia, Zhytomyr region, during the long-term period after the disaster at the Chornobyl Nuclear Power Plant. Regulatory Mechanisms in Biosystems, 8 (3), 444–454. doi: https://doi.org/10.15421/021770
  19. Yavnyuk, A. A., Efremova, N. N., Protsenko, O. N., Gudkov, D. I., Nazarov, A. B. (2009). Fluctuating asymmetry of zebra mussel (Dreissena polymorphaPall.) and floating pondweed (Potamogeton natansL.) in water bodies within the Chernobyl accident Exclusion Zone. Radioprotection, 44 (5), 475–479. doi: https://doi.org/10.1051/radiopro/20095088
  20. Romanchuck, L. D., Fedonyuk, T. P., Fedonyuk, R. G. (2017). Model of influence of landscape vegetation on mass transfer processes. Biosystems Diversity, 25 (3), 203–209. doi: https://doi.org/10.15421/011731
  21. Milner, D., Hel-Or, H., Keren, D., Raz, S., Nevo, E. (2005). Analyzing symmetry in biological systems. IEEE International Conference on Image Processing 2005. doi: https://doi.org/10.1109/icip.2005.1529762
  22. Milligan, J. R., Krebs, R. A., Mal, T. K. (2008). Separating Developmental and Environmental Effects on Fluctuating Asymmetry in Lythrum salicaria and Penthorum sedoides. International Journal of Plant Sciences, 169 (5), 625–630. doi: https://doi.org/10.1086/533600
  23. Romanenko, V. D., Zhukynskyi, V. M., Oksiiuk, O. P., Yatsyk, A. V. et. al. (1998). Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy. Kyiv: Symvol, 28.
  24. Klementova, E., Geynige, V. (1995). Ocenka ekologicheskoy ustoychivosti sel'skohozyaystven nogo landshafta. Melioraciya i vodnoe hozyaystvo, 5, 24–35.
  25. Zaharov, V. M., Baranov, A. S., Borisov, V. I., Valeckiy, A. V. et. al. (2006). Zdorov'e sredy: metodika ocenki. Moscow: Centr ekologicheskoy politiki Rossii, 65.

Downloads

Published

2018-08-27

How to Cite

Romanchuk, L., Fedonyuk, T., Pazych, V., Fedonyuk, R., Khant, G., & Petruk, A. (2018). Assessment of the stability of aquatic ecosystems development on the basis of indicators of the macrophytes fluctuating asymmetry. Eastern-European Journal of Enterprise Technologies, 4(10 (94), 54–61. https://doi.org/10.15587/1729-4061.2018.141055