Studying and substantiation of the method for normalization of air­ionic regime at industrial premises at the ultrasonic ionization of air

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.141060

Keywords:

air-ionic mode, balloelectric effect, ultrasonic cavitation, working zone, production premises

Abstract

We report results of investigations on normalization of the air-ionic mode at premises with ultrasonic ionization of humidified air. We substantiated an increase in the concentration of negative air-ions with complex influence of the balloelectric effect and ultrasonic cavitation. We established that the concentration of negative air-ions increases almost in six times at the use of distilled water as a source of air-ions under the action of an ultrasonic generator with a power of 10 W at a distance of 0.5 m. At the same time, there is no generation of ozone and nitrogen oxides due to the combined influence of ultrasonic cavitation in a surface layer of water and the balloelectric effect. We proved that the concentrations of negative and positive air-ions increase due to changes in physical-and-chemical properties of water and the emerging mechanical-and-chemical phenomena with a decrease in the degree of water mineralization of water.

We proposed a mechanism for formation of air-ions in the humidified air of industrial premises under the combined action of the balloelectric effect and ultrasound. We substantiated that improvement in the quality of the air-ionic composition of air in industrial premises takes place at a temperature of demineralized water of 20‒25 °C and a directed airflow of 6 m/s towards a working zone, with the combined action of the balloelectric effect and ultrasound, which improves sanitary and hygienic working conditions. We proposed a structure of an automated control system for the air-ionic mode of a working area of industrial premises under artificial air-ionization with a use of an air-ions generator and a ventilation system. It will make possible monitoring and processing of information on technological, electrical and microclimatic parameters, adjusting, coordination of work and joint managing of devices of a ventilation system and an ultrasonic generator of air-ions

Author Biographies

Serhii Sukach, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

Doctor of Technical Sciences, Associate Professor

Department of Geodesy, Organization of Land Use and Cadastre

Tatyana Kozlovs’ka, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associate ProfessorDepartment of Biotechnology and Bioengineering

Ihor Serhiienko, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

Department of Automation and computer-integrated technologies

Oleksiy Khodakovskyy, Ecological Safety Educational and Scientific Institute of Kyiv National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03680

PhD, Associate Professor

Department of Life Safety

Iaroslav Liashok, Donetsk National Technical University Shibankov sq., 2, Pokrovsk, Ukraine, 85300

Doctor of Economic Sciences, Associate Professor

Department of mineral deposits development

Oleksandr Kipko, Donetsk National Technical University Shibankov sq., 2, Pokrovsk, Ukraine, 85300

Doctor of Technical Sciences, Professor

Department of mineral deposits development

References

  1. Hlyva, V. A. (2011). Doslidzhennia vplyvu mikroklimatychnykh parametriv povitroobminu na aeroionnyi sklad povitria robochykh prymishchen. Problemy okhorony pratsi v Ukraini, 20, 58–65.
  2. Laktionov, І., Vovna, О., Cherevko, О., Kozlovskaya, Т. (2018). Mathematical model for monitoring carbon dioxide concentration in industrial greenhouses. Agronomy Research, 16 (1), 134–146. doi: https://doi.org/10.15159/ar.17.074
  3. Nazarenko, V. I., Tereshchenko, P. S., Paliichuk, S. P. et. al. (2014). Fizioloho-hihienichna otsinka mikroklimatu suchasnykh ofisnykh prymishchen ta adaptatsiyni reaktsiyi orhanizmu ofisnykh pratsivnykiv. Ukrainskyi zhurnal z problem medytsyny pratsi, 2, 41–47.
  4. Fletcher, L. A., Noakes, C. J., Sleigh, P. A., Beggs, C. B., Shepherd, S. J. (2008). Air Ion Behavior in Ventilated Rooms. Indoor and Built Environment, 17 (2), 173–182. doi: https://doi.org/10.1177/1420326x08089622
  5. Laktionov, I., Vovna, O., Zori, A. (2017). Copncept of low cost computerized measuring system for microclimate parameters of greenhouses. Bulgarian Journal of Agricultural Science, 23 (4), 668–673.
  6. Magnier-Bergeron, L., Derome, D., Zmeureanu, R. (2017). Three-dimensional model of air speed in the secondary zone of displacement ventilation jet. Building and Environment, 114, 483–494. doi: https://doi.org/10.1016/j.buildenv.2017.01.003
  7. Zaporozhets, O. I., Sukach, S. V., Halahan, O. H., Kozlovska, T. F. (2017). Vyznachennia parametriv optymalnoi komfortnosti u robochoi zoni prymishchennia za pokaznykamy povitrianoho seredovyshcha. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho, 1 (102), 17–21.
  8. Min, C., Lee, D., Cho, K., Jo, S., Yang, J., Lee, W. (2011). Control of approach and landing phase for reentry vehicle using fuzzy logic. Aerospace Science and Technology, 15 (4), 269–282. doi: https://doi.org/10.1016/j.ast.2010.07.006
  9. Atiencia Villagomez, J. M., Diveev, A., Sofronova, E. (2012). The network operator method for synthesis of intelligent control system. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). doi: https://doi.org/10.1109/iciea.2012.6360718
  10. Rutkovskaya, D., Pilipins'kiy, M., Rutovskiy, L. (2006). Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy. Moscow, 452.
  11. Kuzev, I. O., Sergienko, S. A., Volyanskiy, R. S. (2011). Drobnomernye regulyatory s «korotkoy pamyat'yu» v releynyh sistemah optimal'nogo upravleniya. Elektromekhanichni i enerhozberihaiuchi systemy, 3, 49–53.
  12. Zagirnyak, M., Serhiienko, S., Serhiienko, I. (2017). Improvement of the qualitative characteristics of an automatic control system with a fractional-order PID-controller. 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE). doi: https://doi.org/10.1109/cpee.2017.8093062
  13. Prakash, J., Jayasurian, S. R. (2013). Design and Implementation of Fractional-Order Controller for Fractional Order System. Lecture Notes in Electrical Engineering, 319–326. doi: https://doi.org/10.1007/978-81-322-1035-1_28
  14. Belyaev, N. N., Cygankova, S. G. (2015). Ocenka aeroionnogo rezhima v rabochey zone pri isskustvennoy ionizacii vozduha v pomeshchenii. Naukovyi visnyk budivnytstva, 3 (81), 158–161.
  15. Belyaev, N. N., Cygankova, S. G. (2015). Matematicheskoe modelirovanie aeroionnogo rezhima v pomeshchenii pri iskusstvennoy ionizacii vozduha. Stroitel'stvo, materialovedenie, mashinostroenie, 83, 40–46.
  16. Sukach, S. V., Sydorov, O. V. (2016). Metodolohichni zasady pidvyshchennia yakosti kontroliu aeroionnoho skladu povitria vyrobnychoho seredovyshcha. Problemy okhorony pratsi v Ukraini, 32, 127–133.
  17. Akimenko, V. Ya., Kharchenko, S. O. (2008). Inzhenerno-tekhnichne obladnannia yak potentsiyne dzherelo hidroaerozolnoho zabrudnennia povitria. Aktualni pytannia hihieny ta ekolohichnoi bezpeky Ukrainy: zbir. tez dopovidei naukovo-praktychnoi konferentsiyi. Kyiv, 11–12.
  18. Wallner, P., Kundi, M., Panny, M., Tappler, P., Hutter, H.-P. (2015). Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults. International Journal of Environmental Research and Public Health, 12 (11), 14301–14311. doi: https://doi.org/10.3390/ijerph121114301
  19. Untersuchungen zum Einfluss von Wandbeschichtungen auf die Ionenzahl und das Verhalten von Partikeln in der Raumluft. Available at: http://www.innenraumanalytik.at/pdfs/fraunhofer_ionen.pdf
  20. Tolkunov, I. O., Popov, I. I. (2011). Vplyv pryrodnykh dzherel aeroionizatsiyi na protses formuvannia poliv kontsentratsiyi aeroioniv u povitrianomu seredovyshchi prymishchen. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, 1 (27), 243–246.
  21. Kolarž, P., Gaisberger, M., Madl, P., Hofmann, W., Ritter, M., Hartl, A. (2012). Characterization of ions at Alpine waterfalls. Atmospheric Chemistry and Physics, 12 (8), 3687–3697. doi: https://doi.org/10.5194/acp-12-3687-2012
  22. Hmelev, V. N., Slivin, A. N., Barsukov, R. V. et. al. (2010). Primenenie ul'trazvuka vysokoy intensivnosti v promyshlenosti. Biysk, 203.
  23. Ravdel, A. A., Ponomareva, A. M. (Eds.) (1983). Kratkiy spravochnik fiziko-himicheskih velichin. Leningrad: Himiya, 232.

Downloads

Published

2018-08-27

How to Cite

Sukach, S., Kozlovs’ka, T., Serhiienko, I., Khodakovskyy, O., Liashok, I., & Kipko, O. (2018). Studying and substantiation of the method for normalization of air­ionic regime at industrial premises at the ultrasonic ionization of air. Eastern-European Journal of Enterprise Technologies, 4(10 (94), 36–45. https://doi.org/10.15587/1729-4061.2018.141060