Development of the linguometric method for automatic identification of the author of text content based on statistical analysis of language diversity coefficients
DOI:
https://doi.org/10.15587/1729-4061.2018.142451Keywords:
NLP, content monitoring, stop words, content analysis, statistical linguistic analysis, quantitative linguisticsAbstract
We have developed the linguometric method for algorithmic support of content monitoring processes to solve the problem of the automatic identification of the author of the Ukrainian text content based on the technology of statistical analysis of the language diversity coefficients. The decomposition of the method for identification of the author based on the analysis of such speech factors as lexical diversity, degree (measure) of syntactic complexity, speech coherence, indexes of exclusivity and concentration of a text was performed. Such parameters of the author’s style as the number of words in the specified text, the total number of words in this text, the number of sentences, the number of prepositions, the number of conjunctions, the number of words with the frequency of 1, the number of words with the frequency of 10 and more were analyzed. The features of the developed methods are the adaptation of the morphological and syntactic analysis of lexical units to the peculiarities of the structures of Ukrainian words/texts. That is, when analyzing linguistic units of the word type, their belonging to a part of speech and declension within this part of speech was taken into account. For this, the flections of these words for their classification, separation of the base for the formation of the corresponding alphabetic-frequency dictionaries were analyzed. Filling these dictionaries was subsequently taken into consideration at the following stages of the identification of the authorship of a text, such as the calculation of parameters and coefficients of the author's speech. Syntactic words (stop or anchor) words are most essential for an individual style of an author, as they are not related to the subject and content of the publication. We compared the results in a set of 200 one-author papers in the technical area of more than 100 different authors over the period of 2001–2017 to determine if and how the coefficients of diversity of a text of these authors change within different periods of time. It was found that for the selected experimental base of more than 200 papers, the best results according to the density criterion are reached by the method for analysis of an article without the initial compulsory information, such as abstracts and keywords in different languages, as well as the list of literature.
References
- Lytvyn, V., Vysotska, V., Pukach, P., Bobyk, I., Uhryn, D. (2017). Development of a method for the recognition of author’s style in the Ukrainian language texts based on linguometry, stylemetry and glottochronology. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 10–19. doi: https://doi.org/10.15587/1729-4061.2017.107512
- Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
- Lytvyn, V., Pukach, P., Bobyk, І., Vysotska, V. (2016). The method of formation of the status of personality understanding based on the content analysis. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.77174
- Lytvyn, V., Vysotska, V., Pukach, P., Vovk, M., Ugryn, D. (2017). Method of functioning of intelligent agents, designed to solve action planning problems based on ontological approach. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.103630
- Lytvyn, V., Vysotska, V., Uhryn, D., Hrendus, M., Naum, O. (2018). Analysis of statistical methods for stable combinations determination of keywords identification. Eastern-European Journal of Enterprise Technologies, 2 (2 (92)), 23–37. doi: https://doi.org/10.15587/1729-4061.2018.126009
- Khomytska, I., Teslyuk, V. (2016). Specifics of phonostatistical structure of the scientific style in English style system. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589887
- Khomytska, I., Teslyuk, V. (2016). The Method of Statistical Analysis of the Scientific, Colloquial, Belles-Lettres and Newspaper Styles on the Phonological Level. Advances in Intelligent Systems and Computing, 149–163. doi: https://doi.org/10.1007/978-3-319-45991-2_10
- Mobasher, B. (2007). Data Mining for Web Personalization. Lecture Notes in Computer Science, 90–135. doi: https://doi.org/10.1007/978-3-540-72079-9_3
- Dinucă, C. E., Ciobanu, D. (2012). Web Content Mining. Annals of the University of Petroşani. Economics, 12 (1), 85–92.
- Xu, G., Zhang, Y., Li, L. (2010). Web Content Mining. Web Mining and Social Networking, 71–87. doi: https://doi.org/10.1007/978-1-4419-7735-9_4
- Bol'shakova, E., Klyshinskiy, E., Lande, D., Noskov, A., Peskova, O., Yagunova, E. (2011). Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i komp'yuternaya lingvistika. Moscow: MIEM, 272.
- Anisimov, A., Marchenko, A. (2002). Sistema obrabotki tekstov na estestvennom yazyke. Iskusstvenniy intellekt, 4, 157–163.
- Perebyinis, V. (2000). Matematychna linhvistyka. Ukrainska mova. Kyiv, 287–302.
- Buk, S. (2008). Osnovy statystychnoi lingvistyky. Lviv, 124.
- Perebyinis, V. (2013). Statystychni metody dlia linhvistiv. Vinnytsia, 176.
- Braslavskiy, P. I. Intellektual'nye informacionnye sistemy. Available at: http://www.kansas.ru/ai2006/
- Lande, D., Zhyhalo, V. (2008). Pidkhid do rishennia problem poshuku dvomovnoho plahiatu. Problemy informatyzatsiyi ta upravlinnia, 2 (24), 125–129.
- Varfolomeev, A. (2000). Psihosemantika slova i lingvostatistika teksta. Kaliningrad, 37.
- Sushko, S., Fomychova, L., Barsukov, Ye. (2010). Chastoty povtoriuvanosti bukv i bihram u vidkrytykh tekstakh ukrainskoiu movoiu. Ukrainian Information Security Research Journal, 12 (3 (48)). doi: https://doi.org/10.18372/2410-7840.12.1968
- Kognitivnaya stilometriya: k postanovke problemy. Available at: http://www.manekin.narod.ru/hist/styl.htm
- Kocherhan, M. (2005). Vstup do movoznavstva. Kyiv, 368.
- Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
- Meshcheryakov, R. V., Vasyukov, N. S. Modeli opredeleniya avtorstva teksta. Available at: http://db.biysk.secna.ru/conference/conference.conference.doc_download?id_thesis_dl=427
- Morozov, N. A. Lingvisticheskie spektry. Available at: http://www.textology.ru/library/book.aspx?bookId=1&textId=3
- Victana. Available at: http://victana.lviv.ua/nlp/linhvometriia
- Kanishcheva, O., Vysotska, V., Chyrun, L., Gozhyj, A. (2017). Method of Integration and Content Management of the Information Resources Network. Advances in Intelligent Systems and Computing, 204–216. doi: https://doi.org/10.1007/978-3-319-70581-1_14
- Su, J., Vysotska, V., Sachenko, A., Lytvyn, V., Burov, Y. (2017). Information resources processing using linguistic analysis of textual content. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095038
- Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2017). The risk management modelling in multi project environment. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098730
- Korobchinsky, M., Chyrun, L., Chyrun, L., Vysotska, V. (2017). Peculiarities of content forming and analysis in internet newspaper covering music news. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). 2017. doi: https://doi.org/10.1109/stc-csit.2017.8098735
- Naum, O., Chyrun, L., Vysotska, V., Kanishcheva, O. (2017). Intellectual system design for content formation. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098753
- Lytvyn, V., Vysotska, V., Burov, Y., Veres, O., Rishnyak, I. (2017). The Contextual Search Method Based on Domain Thesaurus. Advances in Intelligent Systems and Computing, 310–319. doi: https://doi.org/10.1007/978-3-319-70581-1_22
- Marchenko, O. (2006). Modeliuvannia semantychnoho kontekstu pry analizi tekstiv na pryrodniy movi. Visnyk Kyivskoho universytetu, 3, 230–235.
- Jivani, A. G. (2011). A Comparative Study of Stemming Algorithms. Int. J. Comp. Tech. Appl., 2 (6), 1930–1938.
- Mishler, A., Crabb, E. S., Paletz, S., Hefright, B., Golonka, E. (2015). Using Structural Topic Modeling to Detect Events and Cluster Twitter Users in the Ukrainian Crisis. HCI International 2015 - Posters’ Extended Abstracts, 639–644. doi: https://doi.org/10.1007/978-3-319-21380-4_108
- Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
- Bubleinyk, L. (2000). Osoblyvosti khudozhnoho movlennia. Lutsk, 179.
- Kowalska, K., Cai, D., Wade, S. (2012). Sentiment Analysis of Polish Texts. International Journal of Computer and Communication Engineering, 39–42. doi: https://doi.org/10.7763/ijcce.2012.v1.12
- Kotsyba, N. (2009). The current state of work on the Polish–Ukrainian Parallel Corpus (PolUKR). Organization and Development of Digital Lexical Resources, 55–60.
- Rashkevych, Y., Peleshko, D., Vynokurova, O., Izonin, I., Lotoshynska, N. (2017). Single-frame image super-resolution based on singular square matrix operator. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2017.8100390
- Tkachenko, R., Tkachenko, P., Izonin, I., Tsymbal, Y. (2017). Learning-Based Image Scaling Using Neural-Like Structure of Geometric Transformation Paradigm. Studies in Computational Intelligence, 537–565. doi: https://doi.org/10.1007/978-3-319-63754-9_25
- Vysotska, V. (2016). Linguistic analysis of textual commercial content for information resources processing. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452160
- Lizunov, P., Biloshchytskyi, A., Kuchansky, A., Biloshchytska, S., Chala, L. (2016). Detection of near dublicates in tables based on the locality-sensitive hashing method and the nearest neighbor method. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 4–10. doi: https://doi.org/10.15587/1729-4061.2016.86243
- Biloshchytskyi, A., Kuchansky, A., Biloshchytska, S., Dubnytska, A. (2017). Conceptual model of automatic system of near duplicates detection in electronic documents. 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). doi: https://doi.org/10.1109/cadsm.2017.7916155
- Vysotska, V., Rishnyak, I., Chyryn, L. (2007). Analysis and Evaluation of Risks in Electronic Commerce. 2007 9th International Conference – The Experience of Designing and Applications of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2007.4297570
- Vysotska, V., Chyrun, L., Chyrun, L. (2016). Information technology of processing information resources in electronic content commerce systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589909
- Vysotska, V., Chyrun, L., Chyrun, L. (2016). The commercial content digest formation and distributional process. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589902
- Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2016). Content linguistic analysis methods for textual documents classification. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589903
- Lytvyn, V., Vysotska, V. (2015). Designing architecture of electronic content commerce system. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325446
- Vysotska, V., Chyrun, L. (2015). Analysis features of information resources processing. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325448
- Vasyl, L., Victoria, V., Dmytro, D., Roman, H., Zoriana, R. (2017). Application of sentence parsing for determining keywords in Ukrainian texts. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098797
- Maksymiv, O., Rak, T., Peleshko, D. (2017). Video-based Flame Detection using LBP-based Descriptor: Influences of Classifiers Variety on Detection Efficiency. International Journal of Intelligent Systems and Applications, 9 (2), 42–48. doi: https://doi.org/10.5815/ijisa.2017.02.06
- Peleshko, D., Rak, T., Izonin, I. (2016). Image Superresolution via Divergence Matrix and Automatic Detection of Crossover. International Journal of Intelligent Systems and Applications, 8 (12), 1–8. doi: https://doi.org/10.5815/ijisa.2016.12.01
- Bazylyk, O., Taradaha, P., Nadobko, O., Chyrun, L., Shestakevych, T. (2012). The results of software complex OPTAN use for modeling and optimization of standard engineering processes of printed circuit boards manufacturing. 2012 11th International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET), 107–108.
- Bondariev, A., Kiselychnyk, M., Nadobko, O., Nedostup, L., Chyrun, L., Shestakevych, T. (2012). The software complex development for modeling and optimizing of processes of radio-engineering equipment quality providing at the stage of manufacture. TCSET’2012, 159.
- Riznyk, V. (2017). Multi-modular Optimum Coding Systems Based on Remarkable Geometric Properties of Space. Advances in Intelligent Systems and Computing, 512, 129–148. doi: https://doi.org/10.1007/978-3-319-45991-2_9
- Teslyuk, V., Beregovskyi, V., Denysyuk, P., Teslyuk, T., Lozynskyi, A. (2018). Development and Implementation of the Technical Accident Prevention Subsystem for the Smart Home System. International Journal of Intelligent Systems and Applications, 10 (1), 1–8. doi: https://doi.org/10.5815/ijisa.2018.01.01
- Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325440
- Pasichnyk, V., Shestakevych, T. (2017). The model of data analysis of the psychophysiological survey results. Advances in Intelligent Systems and Computing, 512, 271–281. doi: https://doi.org/10.1007/978-3-319-45991-2_18
- Zhezhnych, P., Markiv, O. (2018). Linguistic Comparison Quality Evaluation of Web-Site Content with Tourism Documentation Objects. Advances in Intelligent Systems and Computing, 689, 656–667. doi: https://doi.org/10.1007/978-3-319-70581-1_45
- Chernukha, O., Bilushchak, Y. (2016). Mathematical modeling of random concentration field and its second moments in a semispace with erlangian disrtibution of layered inclusions. Task Quarterly, 20 (3), 295–334.
- Davydov, M., Lozynska, O. (2017). Information system for translation into ukrainian sign language on mobile devices. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098734
- Davydov, M., Lozynska, O. (2018). Mathematical Method of Translation into Ukrainian Sign Language Based on Ontologies. Advances in Intelligent Systems and Computing, 689, 89–100. doi: https://doi.org/10.1007/978-3-319-70581-1_7
- Davydov, M., Lozynska, O. (2016). Linguistic models of assistive computer technologies for cognition and communication. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589898
- Mykich, K., Burov, Y. (2016). Uncertainty in situational awareness systems. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452165
- Mykich, K., Burov, Y. (2016). Algebraic Framework for Knowledge Processing in Systems with Situational Awareness. Advances in Intelligent Systems and Computing, 217–227. doi: https://doi.org/10.1007/978-3-319-45991-2_14
- Mykich, K., Burov, Y. (2016). Research of uncertainties in situational awareness systems and methods of their processing. Eastern-European Journal of Enterprise Technologies, 1 (4 (79)), 19–27. doi: https://doi.org/10.15587/1729-4061.2016.60828
- Mykich, K., Burov, Y. (2016). Algebraic model for knowledge representation in situational awareness systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589896
- Kravets, P. (2010). The control agent with fuzzy logic. Perspective Technologies and Methods in MEMS Design, MEMSTECH'2010 – Proceedings of the 6th International Conference. Lviv, 40–41.
- Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2018). On the Asymptotic Methods of the Mathematical Models of Strongly Nonlinear Physical Systems. Advances in Intelligent Systems and Computing, 689, 421–433. doi: https://doi.org/10.1007/978-3-319-70581-1_30
- Kravets, P. (2007). The Game Method for Orthonormal Systems Construction. 2007 9th International Conference – The Experience of Designing and Applications of CAD Systems in Microelectronics.doi: https://doi.org/10.1109/cadsm.2007.4297555
- Kravets, P. (2016). Game Model of Dragonfly Animat Self-Learning. Perspective Technologies and Methods in MEMS Design, 195–201.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vasyl Lytvyn, Victoria Vysotska, Petro Pukach, Zinovii Nytrebych, Ihor Demkiv, Roman Kovalchuk, Nadiia Huzyk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.