Development of the linguometric method for automatic identification of the author of text content based on statistical analysis of language diversity coefficients

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142451

Keywords:

NLP, content monitoring, stop words, content analysis, statistical linguistic analysis, quantitative linguistics

Abstract

We have developed the linguometric method for algorithmic support of content monitoring processes to solve the problem of the automatic identification of the author of the Ukrainian text content based on the technology of statistical analysis of the language diversity coefficients. The decomposition of the method for identification of the author based on the analysis of such speech factors as lexical diversity, degree (measure) of syntactic complexity, speech coherence, indexes of exclusivity and concentration of a text was performed. Such parameters of the author’s style as the number of words in the specified text, the total number of words in this text, the number of sentences, the number of prepositions, the number of conjunctions, the number of words with the frequency of 1, the number of words with the frequency of 10 and more were analyzed. The features of the developed methods are the adaptation of the morphological and syntactic analysis of lexical units to the peculiarities of the structures of Ukrainian words/texts. That is, when analyzing linguistic units of the word type, their belonging to a part of speech and declension within this part of speech was taken into account. For this, the flections of these words for their classification, separation of the base for the formation of the corresponding alphabetic-frequency dictionaries were analyzed. Filling these dictionaries was subsequently taken into consideration at the following stages of the identification of the authorship of a text, such as the calculation of parameters and coefficients of the author's speech. Syntactic words (stop or anchor) words are most essential for an individual style of an author, as they are not related to the subject and content of the publication. We compared the results in a set of 200 one-author papers in the technical area of more than 100 different authors over the period of 2001–2017 to determine if and how the coefficients of diversity of a text of these authors change within different periods of time. It was found that for the selected experimental base of more than 200 papers, the best results according to the density criterion are reached by the method for analysis of an article without the initial compulsory information, such as abstracts and keywords in different languages, as well as the list of literature.

Author Biographies

Vasyl Lytvyn, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Information Systems and Networks

Victoria Vysotska, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

PhD, Associate Professor

Department of Information Systems and Networks

Petro Pukach, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

Doctor of Technical Sciences, Professor

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

Zinovii Nytrebych, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

Doctor of Physical and Mathematical Sciences, Professor

Department of Mathematics 

Ihor Demkiv, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

Doctor of Physical and Mathematical Sciences, Associate Professor

Department of Computational Mathematics and Programming

Roman Kovalchuk, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

PhD, Associate Professor

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

Nadiia Huzyk, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

PhD

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

References

  1. Lytvyn, V., Vysotska, V., Pukach, P., Bobyk, I., Uhryn, D. (2017). Development of a method for the recognition of author’s style in the Ukrainian language texts based on linguometry, stylemetry and glottochronology. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 10–19. doi: https://doi.org/10.15587/1729-4061.2017.107512
  2. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
  3. Lytvyn, V., Pukach, P., Bobyk, І., Vysotska, V. (2016). The method of formation of the status of personality understanding based on the content analysis. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.77174
  4. Lytvyn, V., Vysotska, V., Pukach, P., Vovk, M., Ugryn, D. (2017). Method of functioning of intelligent agents, designed to solve action planning problems based on ontological approach. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.103630
  5. Lytvyn, V., Vysotska, V., Uhryn, D., Hrendus, M., Naum, O. (2018). Analysis of statistical methods for stable combinations determination of keywords identification. Eastern-European Journal of Enterprise Technologies, 2 (2 (92)), 23–37. doi: https://doi.org/10.15587/1729-4061.2018.126009
  6. Khomytska, I., Teslyuk, V. (2016). Specifics of phonostatistical structure of the scientific style in English style system. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589887
  7. Khomytska, I., Teslyuk, V. (2016). The Method of Statistical Analysis of the Scientific, Colloquial, Belles-Lettres and Newspaper Styles on the Phonological Level. Advances in Intelligent Systems and Computing, 149–163. doi: https://doi.org/10.1007/978-3-319-45991-2_10
  8. Mobasher, B. (2007). Data Mining for Web Personalization. Lecture Notes in Computer Science, 90–135. doi: https://doi.org/10.1007/978-3-540-72079-9_3
  9. Dinucă, C. E., Ciobanu, D. (2012). Web Content Mining. Annals of the University of Petroşani. Economics, 12 (1), 85–92.
  10. Xu, G., Zhang, Y., Li, L. (2010). Web Content Mining. Web Mining and Social Networking, 71–87. doi: https://doi.org/10.1007/978-1-4419-7735-9_4
  11. Bol'shakova, E., Klyshinskiy, E., Lande, D., Noskov, A., Peskova, O., Yagunova, E. (2011). Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i komp'yuternaya lingvistika. Moscow: MIEM, 272.
  12. Anisimov, A., Marchenko, A. (2002). Sistema obrabotki tekstov na estestvennom yazyke. Iskusstvenniy intellekt, 4, 157–163.
  13. Perebyinis, V. (2000). Matematychna linhvistyka. Ukrainska mova. Kyiv, 287–302.
  14. Buk, S. (2008). Osnovy statystychnoi lingvistyky. Lviv, 124.
  15. Perebyinis, V. (2013). Statystychni metody dlia linhvistiv. Vinnytsia, 176.
  16. Braslavskiy, P. I. Intellektual'nye informacionnye sistemy. Available at: http://www.kansas.ru/ai2006/
  17. Lande, D., Zhyhalo, V. (2008). Pidkhid do rishennia problem poshuku dvomovnoho plahiatu. Problemy informatyzatsiyi ta upravlinnia, 2 (24), 125–129.
  18. Varfolomeev, A. (2000). Psihosemantika slova i lingvostatistika teksta. Kaliningrad, 37.
  19. Sushko, S., Fomychova, L., Barsukov, Ye. (2010). Chastoty povtoriuvanosti bukv i bihram u vidkrytykh tekstakh ukrainskoiu movoiu. Ukrainian Information Security Research Journal, 12 (3 (48)). doi: https://doi.org/10.18372/2410-7840.12.1968
  20. Kognitivnaya stilometriya: k postanovke problemy. Available at: http://www.manekin.narod.ru/hist/styl.htm
  21. Kocherhan, M. (2005). Vstup do movoznavstva. Kyiv, 368.
  22. Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
  23. Meshcheryakov, R. V., Vasyukov, N. S. Modeli opredeleniya avtorstva teksta. Available at: http://db.biysk.secna.ru/conference/conference.conference.doc_download?id_thesis_dl=427
  24. Morozov, N. A. Lingvisticheskie spektry. Available at: http://www.textology.ru/library/book.aspx?bookId=1&textId=3
  25. Victana. Available at: http://victana.lviv.ua/nlp/linhvometriia
  26. Kanishcheva, O., Vysotska, V., Chyrun, L., Gozhyj, A. (2017). Method of Integration and Content Management of the Information Resources Network. Advances in Intelligent Systems and Computing, 204–216. doi: https://doi.org/10.1007/978-3-319-70581-1_14
  27. Su, J., Vysotska, V., Sachenko, A., Lytvyn, V., Burov, Y. (2017). Information resources processing using linguistic analysis of textual content. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095038
  28. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2017). The risk management modelling in multi project environment. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098730
  29. Korobchinsky, M., Chyrun, L., Chyrun, L., Vysotska, V. (2017). Peculiarities of content forming and analysis in internet newspaper covering music news. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). 2017. doi: https://doi.org/10.1109/stc-csit.2017.8098735
  30. Naum, O., Chyrun, L., Vysotska, V., Kanishcheva, O. (2017). Intellectual system design for content formation. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098753
  31. Lytvyn, V., Vysotska, V., Burov, Y., Veres, O., Rishnyak, I. (2017). The Contextual Search Method Based on Domain Thesaurus. Advances in Intelligent Systems and Computing, 310–319. doi: https://doi.org/10.1007/978-3-319-70581-1_22
  32. Marchenko, O. (2006). Modeliuvannia semantychnoho kontekstu pry analizi tekstiv na pryrodniy movi. Visnyk Kyivskoho universytetu, 3, 230–235.
  33. Jivani, A. G. (2011). A Comparative Study of Stemming Algorithms. Int. J. Comp. Tech. Appl., 2 (6), 1930–1938.
  34. Mishler, A., Crabb, E. S., Paletz, S., Hefright, B., Golonka, E. (2015). Using Structural Topic Modeling to Detect Events and Cluster Twitter Users in the Ukrainian Crisis. HCI International 2015 - Posters’ Extended Abstracts, 639–644. doi: https://doi.org/10.1007/978-3-319-21380-4_108
  35. Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
  36. Bubleinyk, L. (2000). Osoblyvosti khudozhnoho movlennia. Lutsk, 179.
  37. Kowalska, K., Cai, D., Wade, S. (2012). Sentiment Analysis of Polish Texts. International Journal of Computer and Communication Engineering, 39–42. doi: https://doi.org/10.7763/ijcce.2012.v1.12
  38. Kotsyba, N. (2009). The current state of work on the Polish–Ukrainian Parallel Corpus (PolUKR). Organization and Development of Digital Lexical Resources, 55–60.
  39. Rashkevych, Y., Peleshko, D., Vynokurova, O., Izonin, I., Lotoshynska, N. (2017). Single-frame image super-resolution based on singular square matrix operator. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2017.8100390
  40. Tkachenko, R., Tkachenko, P., Izonin, I., Tsymbal, Y. (2017). Learning-Based Image Scaling Using Neural-Like Structure of Geometric Transformation Paradigm. Studies in Computational Intelligence, 537–565. doi: https://doi.org/10.1007/978-3-319-63754-9_25
  41. Vysotska, V. (2016). Linguistic analysis of textual commercial content for information resources processing. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452160
  42. Lizunov, P., Biloshchytskyi, A., Kuchansky, A., Biloshchytska, S., Chala, L. (2016). Detection of near dublicates in tables based on the locality-sensitive hashing method and the nearest neighbor method. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 4–10. doi: https://doi.org/10.15587/1729-4061.2016.86243
  43. Biloshchytskyi, A., Kuchansky, A., Biloshchytska, S., Dubnytska, A. (2017). Conceptual model of automatic system of near duplicates detection in electronic documents. 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). doi: https://doi.org/10.1109/cadsm.2017.7916155
  44. Vysotska, V., Rishnyak, I., Chyryn, L. (2007). Analysis and Evaluation of Risks in Electronic Commerce. 2007 9th International Conference – The Experience of Designing and Applications of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2007.4297570
  45. Vysotska, V., Chyrun, L., Chyrun, L. (2016). Information technology of processing information resources in electronic content commerce systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589909
  46. Vysotska, V., Chyrun, L., Chyrun, L. (2016). The commercial content digest formation and distributional process. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589902
  47. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2016). Content linguistic analysis methods for textual documents classification. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589903
  48. Lytvyn, V., Vysotska, V. (2015). Designing architecture of electronic content commerce system. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325446
  49. Vysotska, V., Chyrun, L. (2015). Analysis features of information resources processing. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325448
  50. Vasyl, L., Victoria, V., Dmytro, D., Roman, H., Zoriana, R. (2017). Application of sentence parsing for determining keywords in Ukrainian texts. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098797
  51. Maksymiv, O., Rak, T., Peleshko, D. (2017). Video-based Flame Detection using LBP-based Descriptor: Influences of Classifiers Variety on Detection Efficiency. International Journal of Intelligent Systems and Applications, 9 (2), 42–48. doi: https://doi.org/10.5815/ijisa.2017.02.06
  52. Peleshko, D., Rak, T., Izonin, I. (2016). Image Superresolution via Divergence Matrix and Automatic Detection of Crossover. International Journal of Intelligent Systems and Applications, 8 (12), 1–8. doi: https://doi.org/10.5815/ijisa.2016.12.01
  53. Bazylyk, O., Taradaha, P., Nadobko, O., Chyrun, L., Shestakevych, T. (2012). The results of software complex OPTAN use for modeling and optimization of standard engineering processes of printed circuit boards manufacturing. 2012 11th International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET), 107–108.
  54. Bondariev, A., Kiselychnyk, M., Nadobko, O., Nedostup, L., Chyrun, L., Shestakevych, T. (2012). The software complex development for modeling and optimizing of processes of radio-engineering equipment quality providing at the stage of manufacture. TCSET’2012, 159.
  55. Riznyk, V. (2017). Multi-modular Optimum Coding Systems Based on Remarkable Geometric Properties of Space. Advances in Intelligent Systems and Computing, 512, 129–148. doi: https://doi.org/10.1007/978-3-319-45991-2_9
  56. Teslyuk, V., Beregovskyi, V., Denysyuk, P., Teslyuk, T., Lozynskyi, A. (2018). Development and Implementation of the Technical Accident Prevention Subsystem for the Smart Home System. International Journal of Intelligent Systems and Applications, 10 (1), 1–8. doi: https://doi.org/10.5815/ijisa.2018.01.01
  57. Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325440
  58. Pasichnyk, V., Shestakevych, T. (2017). The model of data analysis of the psychophysiological survey results. Advances in Intelligent Systems and Computing, 512, 271–281. doi: https://doi.org/10.1007/978-3-319-45991-2_18
  59. Zhezhnych, P., Markiv, O. (2018). Linguistic Comparison Quality Evaluation of Web-Site Content with Tourism Documentation Objects. Advances in Intelligent Systems and Computing, 689, 656–667. doi: https://doi.org/10.1007/978-3-319-70581-1_45
  60. Chernukha, O., Bilushchak, Y. (2016). Mathematical modeling of random concentration field and its second moments in a semispace with erlangian disrtibution of layered inclusions. Task Quarterly, 20 (3), 295–334.
  61. Davydov, M., Lozynska, O. (2017). Information system for translation into ukrainian sign language on mobile devices. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098734
  62. Davydov, M., Lozynska, O. (2018). Mathematical Method of Translation into Ukrainian Sign Language Based on Ontologies. Advances in Intelligent Systems and Computing, 689, 89–100. doi: https://doi.org/10.1007/978-3-319-70581-1_7
  63. Davydov, M., Lozynska, O. (2016). Linguistic models of assistive computer technologies for cognition and communication. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589898
  64. Mykich, K., Burov, Y. (2016). Uncertainty in situational awareness systems. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452165
  65. Mykich, K., Burov, Y. (2016). Algebraic Framework for Knowledge Processing in Systems with Situational Awareness. Advances in Intelligent Systems and Computing, 217–227. doi: https://doi.org/10.1007/978-3-319-45991-2_14
  66. Mykich, K., Burov, Y. (2016). Research of uncertainties in situational awareness systems and methods of their processing. Eastern-European Journal of Enterprise Technologies, 1 (4 (79)), 19–27. doi: https://doi.org/10.15587/1729-4061.2016.60828
  67. Mykich, K., Burov, Y. (2016). Algebraic model for knowledge representation in situational awareness systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589896
  68. Kravets, P. (2010). The control agent with fuzzy logic. Perspective Technologies and Methods in MEMS Design, MEMSTECH'2010 – Proceedings of the 6th International Conference. Lviv, 40–41.
  69. Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2018). On the Asymptotic Methods of the Mathematical Models of Strongly Nonlinear Physical Systems. Advances in Intelligent Systems and Computing, 689, 421–433. doi: https://doi.org/10.1007/978-3-319-70581-1_30
  70. Kravets, P. (2007). The Game Method for Orthonormal Systems Construction. 2007 9th International Conference – The Experience of Designing and Applications of CAD Systems in Microelectronics.doi: https://doi.org/10.1109/cadsm.2007.4297555
  71. Kravets, P. (2016). Game Model of Dragonfly Animat Self-Learning. Perspective Technologies and Methods in MEMS Design, 195–201.

Downloads

Published

2018-09-18

How to Cite

Lytvyn, V., Vysotska, V., Pukach, P., Nytrebych, Z., Demkiv, I., Kovalchuk, R., & Huzyk, N. (2018). Development of the linguometric method for automatic identification of the author of text content based on statistical analysis of language diversity coefficients. Eastern-European Journal of Enterprise Technologies, 5(2 (95), 16–28. https://doi.org/10.15587/1729-4061.2018.142451