Calculation of toothed gear mechanisms in machines and assemblies considering the effect of lubricants

Authors

  • Beyali Ahmedov Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073, Azerbaijan
  • Ali Najafov Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073, Azerbaijan
  • Ayaz Abdullayev Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073, Azerbaijan
  • Iftikhar Chalabi Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073, Azerbaijan
  • Fazil Veliev Azerbaijan State University of Economics (UNEC) Istiglyaliyat str., 6, Baku, Azerbaijan, AZ 1001, Azerbaijan

DOI:

https://doi.org/10.15587/1729-4061.2018.142621

Keywords:

a lubricant influence coefficient, friction coefficient, contact stress, tangential stresses, complex variables, biharmonic function

Abstract

The basic criteria of operational efficiency of most toothed gear mechanisms is the contact endurance of the conjugated surfaces of the teeth and the flexural endurance of teeth legs. In this case, the calculation based on contact stresses is the principal one in terms of determining the geometrical dimensions of toothed gear mechanisms, while the calculation of tooth bending is performed for validation.

It is known that in order to prolong longevity and improve operational efficiency and load capacity of toothed mechanisms, different lubricants are used. However, given the insufficient body of research into the influence of a lubricant on contact endurance of the active surfaces of teeth, traditional methods for the calculation of toothed gears (for example, GOST 21354-87) equate a lubricant influence coefficient to unity, that is, a perfect case is considered when friction is absent. Such an approach leads to the inaccurate evaluation of load capacity of toothed gears that can be a reason for both their premature failure and the overestimation of their geometrical dimensions.

In this work, we have solved the contact problem on a contact between two bodies of arbitrary shape, close to half-planes, at the finite friction coefficient; it was found that the value of the resulting contact stress exceeds the stress, calculated according to the known Hertz solution, by 6 %.

The proposed procedure for the calculation of toothed gears in terms of contact strength at the finite friction coefficient, without assumptions about the smallness of the contact area and the shape of borders, makes it possible to estimate load capacity of the toothed gears considering the influence of lubrication and the existence of friction between the conjugated surfaces of the teeth.

We have derived the analytical expression for a lubricant influence coefficient based on the solution to the contact problem of pressure from a rigid stamp on the elastic half-plane in terms of the coefficient of friction between the conjugated surfaces of toothed gears. That allows the estimation of the true load capacity of toothed gears under the influence of various lubricants, which is of great theoretical and practical importance when designing machines and assemblies

Author Biographies

Beyali Ahmedov, Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073

PhD, Associate Professor

Department of machine design

Ali Najafov, Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073

Doctor of Technical Sciences, Professor

Department of machine design

Ayaz Abdullayev, Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073

Doctor of Technical Sciences, Professor

Department of machine design

Iftikhar Chalabi, Azerbaijan Technical University Huseyn Javid ave., 25, Baku, Azerbaijan, AZ 1073

PhD, Associate Professor

Department of machine design

Fazil Veliev, Azerbaijan State University of Economics (UNEC) Istiglyaliyat str., 6, Baku, Azerbaijan, AZ 1001

Doctor of Technical Sciences, Professor

Department of technological machines and equipment of the branch

References

  1. Utochnenniy raschet zubchatyh peredach na kontaktnuyu prochnost' (1984). DAN Azerb. SSR. Seriya: fiziko-matematicheskih i tekhnicheskih nauk, 12.
  2. Utochnenniy raschet zubchatyh peredach na kontaktnuyu prochnost' (2004). DAN Azerb. SSR. Seriya: fiziko-matematicheskih i tekhnicheskih nauk, 10 (1B), 205–211.
  3. Polyakov, V. K. (2008). Chislennoe modelirovanie processa zacepleniya evol'ventnyh zubchatyh peredach s uchetom treniya. Nauchno-tekh. zhurnal «VNTR», 2.
  4. Klochko, A. A., Gasanov, M. I., Basova, E. V. (2015). Tekhnologicheskoe obespechenie treniya kacheniya i treniya skol'zheniya v zubchatyh peredachah. Vestnik Nac. tekhn. un-ta "KhPI", 40 (1149), 102–107.
  5. Drozd, M. S., Matlin, M. M., Sidyakin, Yu. I. (1986). Inzhenernye raschety uprugoplasticheskoy kontaktnoy deformacii. Moscow: Mashinostroenie, 224.
  6. Grudinin, G. V. (2003). Raschet zubchatyh cilindricheskih evol'ventnyh peredach. Irkutsk: Izdatel'stvo IrGTU, 87.
  7. Kolosova, E. M., Korotkin, V. I., Chebakov, M. I. (2008). K voprosu o raschete kontaktnyh napryazheniy i nagruzochnoy sposobnosti evol'ventnyh zubchatyh peredach. Izvestiya vysshih uchebnyh zavedeniy. Seriya: tekhnicheskie nauki, 3, 107–112.
  8. Rudenko, S. P., Val'ko, A. P. (2014). Kontaktnaya ustalost' zubchatyh koles transmissiy energonasyshennyh mashin. Minsk: Belorusskaya nauka, 127.
  9. Muskhelishvili, N. I. (1966). Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti. Moscow: Nauka, 708.
  10. Garashchuk, G. N., Litvinova, V. A. (2013). Osnovy rascheta detaley mashin na prochnost'. Tomsk: Izdatel'stvo TGASU, 92.
  11. Ivanov, M. N., Finogenov, V. A. (2008). Detali mashin. Moscow: Vysshaya shkola, 408.
  12. Abdullaev, A. I., Cherkesov, Sh. B., Ahmedov, B. B. (2000). Izuchenie vliyaniya nekotoryh upravlyaemyh faktorov na koefficient treniya skol'zheniya metodom planirovaniya eksperimenta. Uchenye zapiski AzTU, VIII (2), 5–9.
  13. Ahmedov, B. B. (2000). Postroenie analiticheskoy zavisimosti koefficienta vliyaniya smazki dlya zubchatyh peredach i podshipnikov kacheniya. Materialy nauchno-tekhnicheskoy konferencii, AzTU, 259–262.
  14. Matlin, M. M., Mozgunova, A. I., Lebskiy, S. L., Shandybina, I. M. (2010). Osnovy rascheta detaley i uzlov transportnyh mashin. Volgograd: VOLGTU, 251.
  15. Iosilevich, G. B. (1988). Detali mashin. Moscow: Mashinostroenie, 368.
  16. DIN 3990: Grundlagen für die Tragfӓhigkeitsberechnung von Gerad- und Schrӓgstirnrӓdern (1990). Beuth-Verlag.
  17. Niemann, G., Winter, H. (2003). Maschinenelemente. Springer. doi: https://doi.org/10.1007/978-3-662-11873-3
  18. Tschalabi, I. (2008). Lebensdauererhöhung von Zahnradgetrieben durch Aktivierung der Rückflanke. Antriebstechnik, 3, 48–51.
  19. Najafov, A. M., Ahmedov, B. B., Mirzayev, H. İ. (2009). Lubricant selection for constructive elements of the multiple package reducers. International Symposium on Engineering and Architectural Sciences of Balkan, Caucasus and Turkic Republics. Proceedings. Vol. II. Isparta, 83–87.
  20. Najafov, А. M., Ayaz, I. (1997). Аbdullayev Wahrscheinlichkeitstheoretische Methode zur Tragfahigkeitsberechnung von Stirnradgetrieben. Antriebstechnik, 6, 67–69.
  21. Najafov, А. (2013). Poiskovoe konstruirovanie mekhanicheskgo privoda shtangovyh nasosov. Bezbalansirniy stanok-kachalka s zubchatorychazhnym preobrazuyushchim mekhanizmom i paketnym reduktorom na dvuh valah. Palmarium Academic Publishing, Sarbrücken, 135.

Downloads

Published

2018-09-19

How to Cite

Ahmedov, B., Najafov, A., Abdullayev, A., Chalabi, I., & Veliev, F. (2018). Calculation of toothed gear mechanisms in machines and assemblies considering the effect of lubricants. Eastern-European Journal of Enterprise Technologies, 5(7 (95), 43–54. https://doi.org/10.15587/1729-4061.2018.142621

Issue

Section

Applied mechanics