Development of the procedure for the estimation of reliability of reinforced concrete beams, strengthened by building up the stretched reinforcing bars under load

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142750

Keywords:

reinforced concrete beam, strengthening, stochastic parameters, reliability assessment, probability of failure-free operation, level of loading

Abstract

We studied the stresses state of rectangular reinforced concrete beams strengthened by building up the stretched reinforcing bars under the action of load. We developed two principal methods for assessing the reliability of the strengthened beams based on various regulatory documents. According to the developed methods, we established reliability of the tested structures and obtained the results of qualitative and quantitative indicators for reliability, specifically, reliability indices and probabilities of failure-free operation. We analyzed an effect of the considered stochastic parameters of the reserve of bearing capacity of normal cross sections of strengthened beams on a general reliability estimate.

The establishment of actual indicators of reliability of beams strengthened under the action of load will make it possible to approach the issue of reconstruction of elements of buildings and structures more efficiently and economically. In particular, this relates to strengthening of bending of reinforced concrete elements under operation. In addition, the obtained results of reliability study make it possible to operate with those variable parameters that have the maximum influence on variance of the limiting bending moment of beams studied with sufficient accuracy of calculation.

The developed principal methods for assessing reliability make it possible to design strengthened reinforced concrete bending elements with the assigned level of reliability (efficiency of solutions) ‒ probability of failure-free operation, which may be also the subject for further research. Finally, the obtained results make it possible to approach the choice of the strengthening method more effectively.

Thus, we propose a methodology adapted to the current design standards of Ukraine for assessment of reliability. It includes a relatively simple mathematical calculation apparatus. Moreover, in contrast to the results of earlier studies, the obtained values of reliability indicators are clear, since they have a distribution close to proportionality depending on a load level and a diameter of reinforcement extension. Thus, for reliability indices βi, the range of values was from 3.35 to 3.45, and for the probability of failure-free operation P(β)i ‒ from 0.999596 to 0.999720 (towards increasing the reliability level at a larger diameter of the reinforcement of extension and a load level at the moment of strengthening). The discrepancy between identical values of indices found in accordance with engineering and deformation models of calculation was about 8 % only. This fact allows the application of the developed methodology in the design practice. Therefore, taking into consideration the lack of research in the field of assessment of reliability of the reinforced concrete bending elements strengthened under the action of load, we can state that the results obtained are relevant

Author Biographies

Roman Khmil, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of building constructions and bridges

Roman Tytarenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of building constructions and bridges

Yaroslav Blikharskyy, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Lecturer

Department of highways and bridges

Pavlo Vegera, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Assistant

Department of building constructions and bridges

References

  1. Plizzari, G., Cairns, J., Minelli, F. (2008). Flexure and shear behavior of RC beams strengthened by external reinforcement. Concrete Repair, Rehabilitation and Retrofitting II, 377–378. doi: https://doi.org/10.1201/9781439828403.ch147
  2. Blikharskyy, Z., Khmil, R., Vegera, P. (2017). Shear strength of reinforced concrete beams strengthened by P.B.O. fiber mesh under loading. MATEC Web of Conferences, 116, 02006. doi: https://doi.org/10.1051/matecconf/201711602006
  3. Rafeeqi, S. F. A. (2012). Theoretical Model for Ultimate Moment Capacity of RC Beams Strengthened by Unbonded Reinforcement. Arabian Journal for Science and Engineering, 37 (7), 1849–1870. doi: https://doi.org/10.1007/s13369-012-0294-2
  4. Choi, J. (2013). Comparative study of effective stresses of concrete beams strengthened using carbon-fibre-reinforced polymer and external prestressing tendons. Structure and Infrastructure Engineering, 10 (6), 753–766. doi: https://doi.org/10.1080/15732479.2012.759977
  5. DBN V.2.6-98:2009. Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi. Osnovni polozhennia (2011). Kyiv: Minrehionbud Ukrainy, 72.
  6. DBN V.1.2-14-2009. Zahalni pryntsypy zabezpechennia nadiynosti ta bezpeky budivel, sporud, budivelnykh konstruktsiy ta osnov (2009). Kyiv: Minrehionbud Ukrainy, 43.
  7. Mayer, M. (1926). Die Sicherheit der Bauwerte und ihre Berechning nach Granz kraften statt nach zulassigen Spannungen. Springer.
  8. Streleckiy, N. S. (1947). Osnovy statisticheskogo ucheta koefficienta zapasa prochnosti sooruzheniy. Moscow, 95.
  9. Rzhanicyn, A. R. (1952). Primenenie statisticheskih metodov v raschetah sooruzheniy na prochnost' i bezopasnost'. Stroitel'naya mekhanika i raschet sooruzheniy, 6, 22–25.
  10. Cornell, C. A. (1969). A Probability Based Structural Code. ACI Journal Proceedings, 66 (12), 974–985. doi: https://doi.org/10.14359/7446
  11. Bolotin, V. V. (1971). Primenenie metodov teorii veroyatnostey i teorii nadezhnosti v raschetah sooruzheniy. Moscow: Stroyizdat, 255.
  12. Rayzer, V. D. (1998). Teoriya nadezhnosti v stroitel'nom proektirovanii. Moscow: izd-vo ASV, 304.
  13. Pichugin, S. F. (2011). Nadezhnost' stal'nyh konstrukciy proizvodstvennyh zdaniy. Moscow: Izd-vo ASV, 456.
  14. Perel'muter, A. V., Pichugin, S. F. (2014). Ob ocenke uyazvimosti stroitel'nyh konstrukciy. Inzhenerno-stroitel'niy zhurnal, 5, 5–14.
  15. Lantuh-Lyashchenko, A. I. (2014). Koncepciya nadezhnosti v Evrokode. Mosty ta tuneli: teoriya, doslidzhennia, praktyka, 6, 79–88.
  16. Kinash, R. I., Shulchyk, I. V. (2001). Otsinka nadiynosti zalizobetonnykh ferm pokryttia na osnovi obmezhenoi kilkosti eksperymentalnykh danykh. Visnyk DDABA, 1 (26), 110–115.
  17. Wang, Z. (2008). Reliability of four-face fired reinforcement concrete columns. Journal of Huazhong University of Science and Technology: Nature Science, 36 (12), 125–127.
  18. Masiuk, H. Kh. (2017). Otsinka nadiynosti zalizobetonnykh balok, shcho zaznaiut diyi malotsyklovykh povtornykh i znakozminnykh navantazhen. Zbirnyk naukovykh prats UkrDUZT, 169, 224–228.
  19. Kos, Ž., Gotal Dmitrović, L., Klimenko, E. (2017). Developing a model of a strain (deformation) of a damaged reinforced concrete pillar in relation to a linear load capacity. Tehnički glasnik: Technical journal, 11 (4), 150–154.
  20. Selejdak, J., Khmil, R., Blikharskyy, Z. (2018). The influence of simultaneous action of the aggressive environment and loading on strength of RC beams. MATEC Web of Conferences, 183, 02002. doi: https://doi.org/10.1051/matecconf/201818302002
  21. Kovalchuk, V., Markul, R., Pentsak, A., Parneta, B., Gayda, O., Braichenko, S. (2017). Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 37–44. doi: https://doi.org/10.15587/1729-4061.2017.109611
  22. Tytarenko, R. Yu., Khmil, R. Ye. (2017). Osnovni stokhastychni parametry pry otsiniuvanni nadiynosti zalizobetonnykh balok, pidsylenykh dodatkovym armuvanniam. Visnyk Natsionalnoho universytetu «Lvivska politekhnika». Seriya: Teoriya i praktyka budivnytstva, 877, 206–211.
  23. Pichugin, S. F. (2014). Ocenka nadezhnosti zhelezobetonnyh balok s ugleplastikovym vneshnim armirovaniem. Stroitel'stvo, materialovedenie, mashinostroenie. Seriya: Innovacionnye tekhnologii zhiznennogo cikla ob'ektov zhilishchno-grazhdanskogo, promyshlennogo i transportnogo naznacheniya, 77, 153–157.
  24. Sunak, P. O., Shostak, A. V., Syniy, S. V., Sunak, O. P. (2010). Metodyka vyznachennia nadiynosti pidsylenykh sharom stalefibrobetonu zalizobetonnykh elementiv pry rekonstruktsiyi budivel i sporud. Kommunal'noe hozyaystvo gorodov, 93, 498–503.
  25. Wang, N., Ellingwood, B. R., Zureick, A.-H. (2010). Reliability-Based Evaluation of Flexural Members Strengthened with Externally Bonded Fiber-Reinforced Polymer Composites. Journal of Structural Engineering, 136 (9), 1151–1160. doi: https://doi.org/10.1061/(asce)st.1943-541x.0000199
  26. American Concrete Institute (ACI): ACI 318-05. Building code requirements for reinforced concrete (2005). ACI: Farmington Hills, MI, 369.
  27. Alsayed, S. H., Siddiqui, N. A. (2013). Reliability of shear-deficient RC beams strengthened with CFRP-strips. Construction and Building Materials, 42, 238–247. doi: https://doi.org/10.1016/j.conbuildmat.2013.01.024
  28. Lima, J. L., Barros, J. A. (2011). Reliability analysis of shear strengthening externally bonded FRP models. Proceedings of the Institution of Civil Engineers – Structures and Buildings, 164 (1), 43–56. doi: https://doi.org/10.1680/stbu.9.00042
  29. Trentin, C., Casas, J. R. (2015). Safety factors for CFRP strengthening in bending of reinforced concrete bridges. Composite Structures, 128, 188–198. doi: https://doi.org/10.1016/j.compstruct.2015.03.048
  30. Eurocode EN 1990:2002. Basis of structural design (2002). Brussels: European Committee for Standardization (CEN), 87.
  31. Blikharskyi, Z. Ya., Rymar, Ya. V. (2006). Pidsylennia zalizobetonnykh balok naroshchuvanniam armatury pid navantazhenniam. Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 14, 449–454.
  32. SNiP 2.03.01-84*. Betonnye i zhelezobetonnye konstrukcii (1989). Moscow: Gosstroy SSSR, 80.
  33. Ventcel', E. S. (2001). Teoriya veroyatnostey. Moscow, 575.
  34. Lychev, A. S. (2008). Nadezhnost' stroitel'nyh konstrukciy. Moscow: Izd-vo ASV, 184.
  35. Blikharskyi, Z. Ya., Karkhut, I. I. (2017). Rozrakhunok i konstruiuvannia zghynanykh zalizobetonnykh elementiv. Lviv: Vydavnytstvo Lvivskoi politekhniky, 188.

Downloads

Published

2018-09-21

How to Cite

Khmil, R., Tytarenko, R., Blikharskyy, Y., & Vegera, P. (2018). Development of the procedure for the estimation of reliability of reinforced concrete beams, strengthened by building up the stretched reinforcing bars under load. Eastern-European Journal of Enterprise Technologies, 5(7 (95), 32–42. https://doi.org/10.15587/1729-4061.2018.142750

Issue

Section

Applied mechanics