Theoretical research into spatial work of a steel-reinforced-concrete statically indeterminate combined structure

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.143023

Keywords:

combined systems, equations of deformation compatibility, strength, deformability, steel-reinforced-concrete, truss

Abstract

The constructed mathematical model and the developed algorithm for spatial calculation of combined steel-reinforced-concrete truss systems make it possible to determine parameters of the stressed-strained state in the structures' elements. It is proven that the built mathematical model satisfies three groups of conditions: equilibrium; compatibility of deformations that link deformations and displacements; physical conditions that link efforts and deformations. Owing to the devised procedure, we performed theoretical calculations to establish the actual diagrams "bending moment ‒ deflection", "longitudinal force ‒ deflection" depending on the magnitude and place of application of external load. The derived equalities that determine coefficients for the unknowns in a system of linear algebraic equations include the topology parameters and strength characteristics of the structures' elements. That has allowed us to search, within the framework of the developed algorithm, for a minimum of the objective function of the equally-stressed state in the elements of a spatial structure.

We investigated theoretically the strength and deformability of truss steel reinforced concrete structures for symmetrical and asymmetrical loads, taking into consideration the phased operation of the system. Employing an iterative search for a minimum of the objective function of the equally-stressed state at cross sections of the spatial structure's elements has helped establish a decrease in the normal stresses compared to the structures of other type. The results obtained made it possible to design actual construction structures. Therefore, there is reason to assert the practical significance of the constructed mathematical model and the developed algorithm, which were applied when designing the new, and recalculating existing, combined steel-reinforced-concrete truss systems

Author Biographies

Ivan Ivanyk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Building Production

Svitlana Vikhot, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Building Production

Yuriy Vybranets, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Assistant

Department of Building Production

Yuriy Ivanyk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Assistant

Department of Building Constructions and Bridges

References

  1. Sekularac, N., Ivanovic-Sekularac, J., Cikic-Tovarovic, J. (2012). Folded structures in modern architecture. Facta Universitatis – Series: Architecture and Civil Engineering, 10 (1), 1–16. doi: https://doi.org/10.2298/fuace1201001s
  2. Trussoni, M., Simatic, E., Raebel, C. H., Huttelmaier, H. P. (2015). Life-Cycle Assessment Comparison for Long-Span Cable and Truss Structural Systems: Case Study. Journal of Architectural Engineering, 21 (1), 05014005. doi: https://doi.org/10.1061/(asce)ae.1943-5568.0000154
  3. DBN V.2.6-160:2010. Konstruktsiyi budynkiv i sporud. Stalezalizobetonni konstruktsiyi. Osnovni polozhennia (2011). Kyiv: Minrehionbud Ukrainy, 55.
  4. DD ENV 1994-1-1 Eurocode 4. Design of composite steel and con-crete structures: Part 1.1 General rules and rules for buildings (1994). Britіsh Standards Institution.
  5. DD ENV 1994-1-2. Eurocode 4. Design of composite steel and con-Crete structures: Part 1.2, Structural fire design (1994). British standards Institution.
  6. Semko, O. V. (2004). Imovirnisni aspekty rozrakhunku stalezalizobetonnykh konstruktsiy. Kyiv: Stal, 320.
  7. Kmiecik, P., Kamiński, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of Civil and Mechanical Engineering, 11 (3), 623–636. doi: https://doi.org/10.1016/s1644-9665(12)60105-8
  8. Barashykov, A. Ya., Zadorozhnikova, I. V. (2005). Sproshcheni rozrakhunky nesuchoi zdatnosti normalnykh pereriziv zghynalnykh elementiv za deformatsiynoiu modelliu. Resursoekonomni materialy, konstruktsiyi, budivli i sporudy, 12, 109–115.
  9. Gorodeckiy, A. S., Shmukler, V. S., Bondarev, A. V. (2003). Informacionnye tekhnologii rascheta i proektirovaniya stroitel'nyh konstrukciy. Kharkiv: NTU “KhPI”, 889.
  10. Ivanyk, I. H., Vikhot, S. I., Vybranets, Yu. Yu. (2007). Metodyka rehuliuvannia zusyl v kombinovanykh statychno nevyznachenykh stalezalizobetonnykh konstruktsiyakh. Mekhanika i fizyka ruinuvannia budivelnykh materialiv ta konstruktsiy, 7, 443–453.
  11. Ivanyk, I. H., Vikhot, S. I., Pozhar, R. S., Vybranets, Yu. Yu. (2008). Teoretychni doslidzhennia napruzheno-deformovanoho stanu kombinovanykh statychno nevyznachenykh metalevykh konstruktsiy. Visnyk natsionalnoho universytetu Lvivska politekhnika «Teoriya i praktyka budivnytstva», 627, 106–111.
  12. Ivanyk, I. H., Vikhot, S. I., Vybranets, Yu. Yu., Ivanyk, Yu. I. (2014). Prostorovyi rozrakhunok kombinovanykh stalezalizobetonnykh system. Haluzeve mashynobuduvannia, budivnytstvo, 3 (42), 86–91.
  13. Ivanyk, I. H., Vikhot, S. I., Pozhar, R. S., Vybranets, Yu. Yu. (2007). Eksperymentalni doslidzhennia deformovanoho stanu kombinovanykh statychno nevyznachenykh stalezalizobetonnykh konstruktsiy. Visnyk Natsionalnoho universytetu Lvivska politekhnika, 600, 142–147.
  14. Wight, J. K., MacGregor, J. G. (2011). Reinforced Concrete: Mechanics аnd Design. Wilsons Travels Stock, 1177.
  15. ACI Innovation Task Group 4 (2007). ITG-4.3R-07 Report on Structural Design & Detailing for High Strength Concrete in Moderate to High Seismic Applications. ACI Committee, 62.
  16. Kaar, P. H., Capell, H. T., Hanson, N. W. (1978). Stress-Strain Characteristics of High-Strength Concrete. Douglas McHenry International Symposium on ConcreteStructures, ACI Publication SP-55, American Concrete Institute. Detroit: MI, 161–185.

Downloads

Published

2018-09-24

How to Cite

Ivanyk, I., Vikhot, S., Vybranets, Y., & Ivanyk, Y. (2018). Theoretical research into spatial work of a steel-reinforced-concrete statically indeterminate combined structure. Eastern-European Journal of Enterprise Technologies, 5(7 (95), 13–22. https://doi.org/10.15587/1729-4061.2018.143023

Issue

Section

Applied mechanics