“The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate
DOI:
https://doi.org/10.15587/1729-4061.2018.143126Keywords:
nickel hydroxide, specific capacity, supercapacitor, microwave treatment, specific surface area, ageingAbstract
Nickel hydroxide is widely used as an active material of supercapacitors. The most active are samples of Ni(OH)2 with (α+β) layered structure synthesized in a slit diaphragm electrolyzer. However, the processes that occur during filtering and drying, negatively impact electrochemical activity. The influence of microwave treatment of different times (from 0.5 to 5 min) on the structure, surface morphology and porous structure, and also on the electrochemical properties of nickel hydroxide samples prepared in a slit diaphragm electrolyzer, has been studied. A hypothesis was proposed on the existence of the “popcorn effect”: short-term high-power microwave irradiation of the wet sample would result in water boiling and internal explosion of the sample. Treated and untreated samples were studied by means of X-ray diffraction analysis, scanning electron microscopy and BET nitrogen adsorption-desorption. Electrochemical characteristics were studied by means of galvanostatic charge-discharge cycling in the supercapacitor regime. The existence of the “popcorn effect” has been confirmed by increased sample thickness after microwave treatment by 1.94 times, specific surface area 2.13 times, pore volume by 2.66 times, and average pore diameter by 1.46 times, It was discovered, that increasing treatment duration to 2–5 min leads to microwave drying. XRD results revealed the occurrence of ageing (crystallization) processes of nickel hydroxide during thermal drying and their absence upon realization of the “popcorn effect”. This results in the formation of X-ray amorphous samples. Comparative analysis of electrochemical characteristics of treated and untreated Ni(OH)2 samples was performed. An increase of specific capacity at high current densities (80 and 120 mA/cm2) for treated samples was observed: by 10.9 % upon microwave drying, 24–42 % upon realization of the “popcorn effect”. The maximum capacity of 231.1 F/g has been observed for the sample, in which the “popcorn effect” was realized the most. However, microwave treatment resulted in lower capacities at low cycling current density. This is related to the thermal treatment of the particle surface, caused by rapid boiling of water. A magnetron of a higher power is required for avoiding this negative effectReferences
- Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297
- Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011
- Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
- Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
- Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
- Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
- Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
- Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406
- Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: https://doi.org/10.1149/1.1865852
- Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5
- Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: https://doi.org/10.1149/1.1393480
- Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
- Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
- Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
- Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873
- Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
- Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
- Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
- Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
- Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
- Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
- Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: https://doi.org/10.1021/jp303546r
- Hermet, P., Gourrier, L., Bantignies, J.-L., Ravot, D., Michel, T., Deabate, S. et. al. (2011). Dielectric, magnetic, and phonon properties of nickel hydroxide. Physical Review B, 84 (23). doi: https://doi.org/10.1103/physrevb.84.235211
- Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., Henn, F. (2011). Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. The Journal of Physical Chemistry C, 115 (30), 15067–15074. doi: https://doi.org/10.1021/jp203222t
- Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
- Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y
- Li, Y., Yao, J., Zhu, Y., Zou, Z., Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081
- Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
- Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
- Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
- Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
- Li, L., Seng, K. H., Liu, H., Nevirkovets, I. P., Guo, Z. (2013). Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochimica Acta, 87, 801–808. doi: https://doi.org/10.1016/j.electacta.2012.08.127
- Zhang, X., Sun, X., Zhang, H., Zhang, D., Ma, Y. (2013). Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochimica Acta, 87, 637–644. doi: https://doi.org/10.1016/j.electacta.2012.10.022
- Ming, B., Li, J., Kang, F., Pang, G., Zhang, Y., Chen, L. et. al. (2012). Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 198, 428–431. doi: https://doi.org/10.1016/j.jpowsour.2011.10.003
- Zhu, Z., Wei, N., Liu, H., He, Z. (2011). Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Advanced Powder Technology, 22 (3), 422–426. doi: https://doi.org/10.1016/j.apt.2010.06.008
- Mondal, A. K., Su, D., Chen, S., Zhang, J., Ung, A., Wang, G. (2014). Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 610-611, 115–120. doi: https://doi.org/10.1016/j.cplett.2014.07.025
- Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q. et. al. (2012). Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 22 (12), 2632–2641. doi: https://doi.org/10.1002/adfm.201102839
- Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: https://doi.org/10.1021/cm702207w
- Zhang, X., Li, C., Miao, W., Sun, X., Wang, K., Ma, Y. (2015). Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences, 58 (11), 1871–1876. doi: https://doi.org/10.1007/s11431-015-5934-9
- Xu, J., Dong, Y., Cao, J., Guo, B., Wang, W., Chen, Z. (2013). Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications. Electrochimica Acta, 114, 76–82. doi: https://doi.org/10.1016/j.electacta.2013.09.161
- Araszkiewicz, M., Koziol, A., Oskwarek, A., Lupinski, M. (2004). Microwave Drying of Porous Materials. Drying Technology, 22 (10), 2331–2341. doi: https://doi.org/10.1081/drt-200040014
- Jeanolovicius, L. A., Senise, J. T., do Nascimento, R. B. (2007). Microwave drying of zinc sulfate. 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. 2007. doi: https://doi.org/10.1109/imoc.2007.4404264
- González, M. D., Cesteros, Y., Salagre, P. (2010). Effect of microwaves on the surface and acidic properties of dealuminated zeolites. Physics Procedia, 8, 104–108. doi: https://doi.org/10.1016/j.phpro.2010.10.019
- Pinheiro, L. B., Martinelli, A. E., Fonseca, F. C. (2014). Effects of Microwave Processing on the Properties of Nickel Oxide/Zirconia/Ceria Composites. Advanced Materials Research, 975, 154–159. doi: https://doi.org/10.4028/www.scientific.net/amr.975.154
- Soler-Illia, G. J. de A. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. (1999). Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism. Chemistry of Materials, 11 (11), 3140–3146. doi: https://doi.org/10.1021/cm9902220
- Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
- Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vadym Kovalenko, Valerii Kotok
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.