“The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate

Authors

  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave, 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2018.143126

Keywords:

nickel hydroxide, specific capacity, supercapacitor, microwave treatment, specific surface area, ageing

Abstract

Nickel hydroxide is widely used as an active material of supercapacitors. The most active are samples of Ni(OH)2 with (α+β) layered structure synthesized in a slit diaphragm electrolyzer. However, the processes that occur during filtering and drying, negatively impact electrochemical activity. The influence of microwave treatment of different times (from 0.5 to 5 min) on the structure, surface morphology and porous structure, and also on the electrochemical properties of nickel hydroxide samples prepared in a slit diaphragm electrolyzer, has been studied. A hypothesis was proposed on the existence of the “popcorn effect”: short-term high-power microwave irradiation of the wet sample would result in water boiling and internal explosion of the sample. Treated and untreated samples were studied by means of X-ray diffraction analysis, scanning electron microscopy and BET nitrogen adsorption-desorption. Electrochemical characteristics were studied by means of galvanostatic charge-discharge cycling in the supercapacitor regime. The existence of the “popcorn effect” has been confirmed by increased sample thickness after microwave treatment by 1.94 times, specific surface area 2.13 times, pore volume by 2.66 times, and average pore diameter by 1.46 times, It was discovered, that increasing treatment duration to 2–5 min leads to microwave drying. XRD results revealed the occurrence of ageing (crystallization) processes of nickel hydroxide during thermal drying and their absence upon realization of the “popcorn effect”. This results in the formation of X-ray amorphous samples. Comparative analysis of electrochemical characteristics of treated and untreated Ni(OH)2 samples was performed. An increase of specific capacity at high current densities (80 and 120 mA/cm2) for treated samples was observed: by 10.9 % upon microwave drying, 24–42 % upon realization of the “popcorn effect”. The maximum capacity of 231.1 F/g has been observed for the sample, in which the “popcorn effect” was realized the most. However, microwave treatment resulted in lower capacities at low cycling current density. This is related to the thermal treatment of the particle surface, caused by rapid boiling of water. A magnetron of a higher power is required for avoiding this negative effect

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Chemical Technologies of Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave, 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297
  2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011
  3. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
  4. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
  5. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
  6. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  7. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
  8. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406
  9. Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: https://doi.org/10.1149/1.1865852
  10. Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5
  11. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: https://doi.org/10.1149/1.1393480
  12. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
  13. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
  14. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  15. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
  16. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873
  17. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  18. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
  19. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  20. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
  21. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
  22. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  23. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: https://doi.org/10.1021/jp303546r
  24. Hermet, P., Gourrier, L., Bantignies, J.-L., Ravot, D., Michel, T., Deabate, S. et. al. (2011). Dielectric, magnetic, and phonon properties of nickel hydroxide. Physical Review B, 84 (23). doi: https://doi.org/10.1103/physrevb.84.235211
  25. Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., Henn, F. (2011). Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. The Journal of Physical Chemistry C, 115 (30), 15067–15074. doi: https://doi.org/10.1021/jp203222t
  26. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
  27. Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y
  28. Li, Y., Yao, J., Zhu, Y., Zou, Z., Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081
  29. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  30. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  31. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  32. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
  33. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
  34. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  35. Li, L., Seng, K. H., Liu, H., Nevirkovets, I. P., Guo, Z. (2013). Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochimica Acta, 87, 801–808. doi: https://doi.org/10.1016/j.electacta.2012.08.127
  36. Zhang, X., Sun, X., Zhang, H., Zhang, D., Ma, Y. (2013). Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochimica Acta, 87, 637–644. doi: https://doi.org/10.1016/j.electacta.2012.10.022
  37. Ming, B., Li, J., Kang, F., Pang, G., Zhang, Y., Chen, L. et. al. (2012). Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 198, 428–431. doi: https://doi.org/10.1016/j.jpowsour.2011.10.003
  38. Zhu, Z., Wei, N., Liu, H., He, Z. (2011). Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Advanced Powder Technology, 22 (3), 422–426. doi: https://doi.org/10.1016/j.apt.2010.06.008
  39. Mondal, A. K., Su, D., Chen, S., Zhang, J., Ung, A., Wang, G. (2014). Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 610-611, 115–120. doi: https://doi.org/10.1016/j.cplett.2014.07.025
  40. Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q. et. al. (2012). Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 22 (12), 2632–2641. doi: https://doi.org/10.1002/adfm.201102839
  41. Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: https://doi.org/10.1021/cm702207w
  42. Zhang, X., Li, C., Miao, W., Sun, X., Wang, K., Ma, Y. (2015). Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences, 58 (11), 1871–1876. doi: https://doi.org/10.1007/s11431-015-5934-9
  43. Xu, J., Dong, Y., Cao, J., Guo, B., Wang, W., Chen, Z. (2013). Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications. Electrochimica Acta, 114, 76–82. doi: https://doi.org/10.1016/j.electacta.2013.09.161
  44. Araszkiewicz, M., Koziol, A., Oskwarek, A., Lupinski, M. (2004). Microwave Drying of Porous Materials. Drying Technology, 22 (10), 2331–2341. doi: https://doi.org/10.1081/drt-200040014
  45. Jeanolovicius, L. A., Senise, J. T., do Nascimento, R. B. (2007). Microwave drying of zinc sulfate. 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. 2007. doi: https://doi.org/10.1109/imoc.2007.4404264
  46. González, M. D., Cesteros, Y., Salagre, P. (2010). Effect of microwaves on the surface and acidic properties of dealuminated zeolites. Physics Procedia, 8, 104–108. doi: https://doi.org/10.1016/j.phpro.2010.10.019
  47. Pinheiro, L. B., Martinelli, A. E., Fonseca, F. C. (2014). Effects of Microwave Processing on the Properties of Nickel Oxide/Zirconia/Ceria Composites. Advanced Materials Research, 975, 154–159. doi: https://doi.org/10.4028/www.scientific.net/amr.975.154
  48. Soler-Illia, G. J. de A. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. (1999). Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism. Chemistry of Materials, 11 (11), 3140–3146. doi: https://doi.org/10.1021/cm9902220
  49. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  50. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810

Downloads

Published

2018-09-26

How to Cite

Kovalenko, V., & Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5(6 (95), 12–20. https://doi.org/10.15587/1729-4061.2018.143126

Issue

Section

Technology organic and inorganic substances