Establishing the patterns in the formation of oxide films on the alloy Ti6Al4V in carbonic acid solutions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.143793

Keywords:

anodic polarization, electrochemical oxidation, oxide film, molding dependence, potential gradient

Abstract

This paper reports results of studying the features of the formation of thin interference-colored oxide films on the alloy Ti6Al4V alloy in solutions of carboxylic acids. It has been established that a change in voltage on the cell corresponding to the molding dependence of the alloy depends on the anodic current density. At current densities <0.5 A∙dm–2, a continuous oxide film is not formed at the alloy surface and the assigned voltage value is not reached. An increase in current density to values higher than 0.5 A∙dm–2 predetermines a linear change in voltage over time with followed by reaching the assigned magnitude U. The maximum film thickness for these conditions is defined by the voltage magnitude and does not depend on the electrolysis mode. Color of the oxide film is defined by the specified value for the molding voltage and does not depend on current density, nature and concentration of carboxylic acid. A match between the molding dependences of oxidation obtained in different electrolytes suggests that the formation of oxide proceeds in line with the same mechanism. The obtained data are explained by the fact that the formation of oxide under the galvanic static mode takes place under conditions of the presence of a constant potential gradient in the oxide film. An increase in the voltage magnitude applied to the cell predetermines a proportional increase in the maximum oxide thickness, since it leads to an increase in the amount of electricity passed through the cell and a corresponding increase in the mass of the oxidized metal. Results of the study into determining the effect of the nature of carboxylic acid on the formation process of an oxide film on the alloy Ti6Al4V using the method of electrochemical oxidation have demonstrated that the nature of the electrolyte does not affect the characteristics of its formation. The obtained data allow us to suggest that the choice of an electrolyte for the development of a technology for electrochemical oxidation of titanium implants should be based on the results of studying the functional properties of the obtained coatings

Author Biographies

Maryna Ivashchenko, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD

Department of labor and environment protection

Olha Smirnova, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of technical electrochemistry

Svitlana Kyselova, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department Occupational Safety and Environment Protection

Svetlana Avina, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of chemical technologies of inorganic substances, catalysis and ecology

Alexander Sincheskul, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of chemical technology of inorganic substances, catalysis and ecology

Alexei Pilipenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of technical electrochemistry

References

  1. Adya, N., Alam, M., Ravindranath, T., Mubeen, A., Saluja, B. (2005). Corrosion in titanium dental implants: literature review. The Journal of Indian Prosthodontic Society, 5 (3), 126. doi: https://doi.org/10.4103/0972-4052.17104
  2. Mohammed, M. T., Khan, Z. A., Siddiquee, A. N. (2014). Surface Modifications of Titanium Materials for developing Corrosion Behavior in Human Body Environment: A Review. Procedia Materials Science, 6, 1610–1618. doi: https://doi.org/10.1016/j.mspro.2014.07.144
  3. Garg, H., Bedi, G., Garg, A. (2012). Implant surface modifiations: a review. Journal of Clinical and Diagnostic Research, 6 (2), 319–324.
  4. Liu, X., Chu, P., Ding, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47 (3-4), 49–121. doi: https://doi.org/10.1016/j.mser.2004.11.001
  5. Pilipenko, A., Pancheva, H., Deineka, V., Vorozhbiyan, R., Chyrkina, M. (2018). Formation of oxide fuels on VT6 alloy in the conditions of anodial polarization in solutions H2SO4. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 33–38. doi: https://doi.org/10.15587/1729-4061.2018.132521
  6. Popa, M. V., Vasilescu, E., Drob, P., Anghel, M., Vasilescu, C., Mirza-Rosca, I., Santana Lopez, A. (2002). Anodic passivity of some titanium base alloys in aggressive environments. Materials and Corrosion, 53 (1), 51–55. doi: https://doi.org/10.1002/1521-4176(200201)53:1<51::aid-maco51>3.0.co;2-6
  7. Yan, Z. M., Guo, T. W., Pan, H. B., Yu, J. J. (2002). Influences of Electrolyzing Voltage on Chromatics of Anodized Titanium Dentures. Materials Transactions, 43 (12), 3142–3145. doi: https://doi.org/10.2320/matertrans.43.3142
  8. Diamanti, M. V., Del Curto, B., Masconale, V., Passaro, C., Pedeferri, M. P. (2011). Anodic coloring of titanium and its alloy for jewels production. Color Research & Application, 37 (5), 384–390. doi: https://doi.org/10.1002/col.20683
  9. Gaul, E. (1993). Coloring titanium and related metals by electrochemical oxidation. Journal of Chemical Education, 70 (3), 176. doi: https://doi.org/10.1021/ed070p176
  10. Shibata, T., Zhu, Y.-C. (1995). The effect of film formation conditions on the structure and composition of anodic oxide films on titanium. Corrosion Science, 37 (2), 253–270. doi: https://doi.org/10.1016/0010-938x(94)00133-q
  11. Diamanti, M. V., Del Curto, B., Pedeferri, M. (2008). Interference colors of thin oxide layers on titanium. Color Research & Application, 33 (3), 221–228. doi: https://doi.org/10.1002/col.20403
  12. Lu, J. (2017). Enhanced Corrosion Resistance of TA2 Titanium via Anodic Oxidation in Mixed Acid System. International Journal of Electrochemical Science, 2763–2776. doi: https://doi.org/10.20964/2017.04.69
  13. Napoli, G., Paura, M., Vela, T., Di Schino, A. (2018). Coloring titanium alloys by anodic oxidation. Metalurgija, 1-2, 111–113.
  14. Hamouda, I. M., El-wassefy, N. A., Marzook, H. A., El-deen, A. N., Habib, A., El-awady, G. Y. (2014). Micro-photographic analysis of titanium anodization to assess bio-activation. Eur. J. Biotech. Biosci., 3, 17.
  15. Choudhary, R. K., Sarkar, P., Biswas, A., Mishra, P., Abraham, G. J., Sastry, P. U., Kain, V. (2017). Structure, Morphology and Optical Properties of TiO2 Films Formed by Anodizing in a Mixed Solution of Citric Acid and Sulfamic Acid. Journal of Materials Engineering and Performance, 26 (8), 4001–4010. doi: https://doi.org/10.1007/s11665-017-2818-0
  16. Schmidt, A. M., Azambuja, D. S. (2006). Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides. Materials Research, 9 (4), 387–392. doi: https://doi.org/10.1590/s1516-14392006000400008
  17. Sul, Y.-T., Johansson, C. B., Jeong, Y., Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23 (5), 329–346. doi: https://doi.org/10.1016/s1350-4533(01)00050-9
  18. Al-Swayih, A. (2016). The Electrochemical Behavior of Titanium Improved by Nanotubular Oxide Formed by Anodization for Biomaterial Applications: A Review. Oriental Journal of Chemistry, 32 (6), 2841–2856.doi: https://doi.org/10.13005/ojc/320602
  19. Fu, C., Liang, H., Yu, M., Liu, J., Li, S. (2015). Effect of tartaric acid concentration on the anodic behaviour of titanium alloy. International Journal of Electrochemical Science, 10, 3431–3441.
  20. Liu, Z. J., Zhong, X., Walton, J., Thompson, G. E. (2015). Anodic Film Growth of Titanium Oxide Using the 3-Electrode Electrochemical Technique: Effects of Oxygen Evolution and Morphological Characterizations. Journal of The Electrochemical Society, 163 (3), E75–E82. doi: https://doi.org/10.1149/2.0181603jes
  21. Yu, M., Liang, H., Liu, J., Wu, L., Li, X., Zhu, M. (2014). Effect of tartaric acid on anodic behaviour of titanium alloy. Surface Engineering, 31 (12), 912–918. doi: https://doi.org/10.1179/1743294414y.0000000402
  22. Smirnova, O., Pilipenko, A., Pancheva, H., Zhelavskyi, A., Rutkovska, K. (2018). Study of anode processes during development of the new complex thiocarbamide­citrate copper plating electrolyte. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 47–52. doi: https://doi.org/10.15587/1729-4061.2018.123852
  23. Maizelis, A., Bairachny, B. (2017). Voltammetric Analysis of Phase Composition of Zn-Ni Alloy Thin Films Electrodeposited from Weak Alkaline Polyligand Electrolyte. Journal of Nano- and Electronic Physics, 9 (5), 05010-1–05010-7. doi: https://doi.org/10.21272/jnep.9(5).05010
  24. Pancheva, H., Reznichenko, A., Miroshnichenko, N., Sincheskul, A., Pilipenko, A., Loboichenko, V. (2017). Study into the influence of concentration of ions of chlorine and temperature of circulating water on the corrosion stability of carbon steel and cast iron. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 59–64. doi: https://doi.org/10.15587/1729-4061.2017.108908
  25. Pilipenko, A., Pancheva, H., Reznichenko, A., Myrgorod, O., Miroshnichenko, N., Sincheskul, A. (2017). The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 21–28. doi: https://doi.org/10.15587/1729-4061.2017.95989
  26. Maizelis, A. A., Bairachnyi, B. I., Tul’skii, G. G. (2016). Contact Displacement of Copper at Copper Plating of Carbon Steel Parts. Surface Engineering and Applied Electrochemistry, 54 (1), 12–19. doi: https://doi.org/10.3103/s1068375518010106
  27. Sincheskul, A., Pancheva, H., Loboichenko, V., Avina, S., Khrystych, O., Pilipenko, A. (2017). Design of the modified oxide-nickel electrode with improved electrical characteristics. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 23–28. doi: https://doi.org/10.15587/1729-4061.2017.112264
  28. Silchenko, D., Pilipenko, A., Pancheva, H., Khrystych, O., Chyrkina, M., Semenov, E. (2018). Establishing the patterns in anode behavior of copper in phosphoric acid solutions when adding alcohols. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 35–41. doi: https://doi.org/10.15587/1729-4061.2018.140554
  29. Aladjem, A. (1973). Anodic oxidation of titanium and its alloys. Journal of Materials Science, 8 (5), 688–704. doi: https://doi.org/10.1007/bf00561225

Downloads

Published

2018-10-05

How to Cite

Ivashchenko, M., Smirnova, O., Kyselova, S., Avina, S., Sincheskul, A., & Pilipenko, A. (2018). Establishing the patterns in the formation of oxide films on the alloy Ti6Al4V in carbonic acid solutions. Eastern-European Journal of Enterprise Technologies, 5(6 (95), 21–26. https://doi.org/10.15587/1729-4061.2018.143793

Issue

Section

Technology organic and inorganic substances