Ontological support formation for constructive-synthesizing modeling of information systems development processes

Authors

  • Vladislav Skalozub Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-1941-4751
  • Valeriy Ilman Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0003-0983-8611
  • Viktor Shynkarenko Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0001-8738-7225

DOI:

https://doi.org/10.15587/1729-4061.2018.143968

Keywords:

ontological support, constructive modeling, conceptualization, methods of inference, automated systems

Abstract

The globalization of information systems (ISs) in the process of continuous operation and modernization creates new problems and reveals specific representations of IS tasks. Such a complex industry IS, requiring appropriate ontological support, is the unified automated system for managing freight traffic of Ukrzaliznytsia (ACS FT UZ-U). To develop the infrastructure information subsystems such as rolling stock and traction staff, traffic management, finance, personnel and a number of others, it is necessary to develop interconnected ontological support.

Therefore, methods and means of ontological support of constructive-synthesizing modeling (OCSM) have been developed, designed to support the processes of multistage creation, a long period of operation and the continuous development of the ACS FT UZ-U. The results obtained are distinguished by universalism, as they provide opportunities for representing the evolution of the object (IS) and the content of ontologies in the OCSM.

The formation of models and methods of the OCSM has been obtained by expanding relations and mappings as well as by creating new generating structures, complementing classes of signatures with new constructive relations. At the same time, the model of a unified, universal and customizable ontological constructive structure (OCS) has been developed. The OCS takes into account the requirements for representing the processes of expanding the subject area as well as unifying knowledge. For CSM problems, methods and means of modeling the conceptualization processes of developing objects have been created and constructive calculus has been devised for the generating class of mappings along with methods for constructing higher-order ontological objects. For the ontological support of the CSM processes in the context of expanding subject areas, the inference methods in the model of the OCSM constructive structure have been improved and procedures for meaningful, structural and related deducibility have been proposed together with multilevel inference methods.

Examples have been given of the implementation of the currently existing procedures for creating new applications of the automated system ACS FT UZ-U using the proposed CSM tools. The examples demonstrate the adequacy of the developed models and means of the OCSM for the implementation of procedures for the development and maintenance of complex railway ACSs

Author Biographies

Vladislav Skalozub, Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor, Dean

Department of Computer Information Technologies

Valeriy Ilman, Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Computer Information Technologies

Viktor Shynkarenko, Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Information Technologies

References

  1. Palagin, A. V., Petrenko, N. G., Mitrofanova, A. E. (2016). K voprosu postroeniya ontologicheskih sistem raznogo naznacheniya. Kompiuterni zasoby, merezhi ta systemy, 15, 5–9.
  2. Palagin, A., Kryviy, S., Petrenko, N. (2015). Razrabotka, issledovanie i predstavlenie funkciy i operaciy na ontologiyah. Information Theories and Applications, 22 (2), 103–114.
  3. Palagin, A. V. (2016). Ontologicheskaya koncepciya informatizacii nauchnyh issledovaniy. Kibernetika i sistemniy analiz, 52 (1), 3–9.
  4. Guarino, N. (1997). Understanding, building and using ontologies. International Journal of Human-Computer Studies, 46 (2-3), 293–310. doi: https://doi.org/10.1006/ijhc.1996.0091
  5. Shinkarenko, V. I., Il'man, V. M. (2014). Konstruktivno-produkcionnye struktury i ih grammaticheskie interpretacii. І. Obobshchennaya formal'naya konstruktivno-produkcionnaya struktura. Kibernetika i sistemniy analiz, 50 (5), 8–16.
  6. Shinkarenko, V. I., Il'man, V. M. (2014). Konstruktivno-produkcionnye struktury i ih grammaticheskie interpretacii. ІІ. Utochnyayushchie preobrazovaniya. Kibernetika i sistemniy analiz, 50 (6), 15–28.
  7. Skalozub, V., Ilman, V., Shynkarenko, V. (2017). Development of ontological support of constructive-synthesizing modeling of information systems. Eastern-European Journal of Enterprise Technologies, 6 (4 (90)), 58–69. doi: https://doi.org/10.15587/1729-4061.2017.119497
  8. Skalozub, V. V., Shynkarenko, V. I., Tseitlin, S. Yu., Cherednychenko, M. S. (2017). Modeli ontolohichnoi pidtrymky avtomatyzovanykh system keruvannia zaliznychnymy vantazhnymy perevezenniamy v Ukraini. Sistemnye tekhnologii, 5 (112), 153–165.
  9. Skalozub, V. V., Ceytlin, S. Yu., Cherednichenko, M. S. (2016). Intellektual'nye informacionnye tekhnologii i sistemy zheleznodorozhnogo transporta. Sistemnye tekhnologii modelirovaniya slozhnyh processov. Dnepr, 560–589.
  10. Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies, 43 (5-6), 907–928. doi: https://doi.org/10.1006/ijhc.1995.1081
  11. Nardi, J. C., Falbo, R. de A., Almeida, J. P. A., Guizzardi, G., Pires, L. F., van Sinderen, M. J. et. al. (2015). A commitment-based reference ontology for services. Information Systems, 54, 263–288. doi: https://doi.org/10.1016/j.is.2015.01.012
  12. Chauhan, A., Vijayakumar, V., Ragala, R. (2015). Towards a Multi-level Upper Ontology/ foundation Ontology Framework as Background Knowledge for Ontology Matching Problem. Procedia Computer Science, 50, 631–634. doi: https://doi.org/10.1016/j.procs.2015.04.096
  13. Kazi, Z., Kazi, L., Radulovic, B., Bhatt, M. (2016). Ontology-Based System for Conceptual Data Model Evaluation. The International Arab Journal of Information Technology, 13 (5), 542–551.
  14. Benslimane, S., Malki, M., Bouchiha, D. (2010). Deriving Conceptual Schema from Domain Ontology: A Web Application Reverse Engineering Approach. The International Arab Journal of Information Technology, 7 (2), 167–176.
  15. Manuja, M., Garg ,D. (2015). Intelligent text classification system based on self-administered ontology. Turkish Journal of Electrical Engineering &Computer Sciences, 23, 1393–1404. doi: https://doi.org/10.3906/elk-1305-112
  16. Bova, V. V., Leshchanov, D. V., Kravchenko, D. Yu., Novikov, A. A. (2014). Komp'yuternaya ontologiya: zadachi i metodologiya postroeniya. Informatika, vychislitel'naya tekhnika i inzhenernoe obrazovanie, 4, 44–55.
  17. Pancerz, K., Lewicki, A., Tadeusiewicz, R. (2015). Ant-based extraction of rules in simple decision systems over ontological graphs. International Journal of Applied Mathematics and Computer Science, 25 (2), 377–387. doi: https://doi.org/10.1515/amcs-2015-0029
  18. Pancerz, K. (2016). Paradigmatic and Syntagmatic Relations in Information Systems over Ontological Graphs. Fundamenta Informaticae, 148 (1-2), 229–242. doi: https://doi.org/10.3233/fi-2016-1432
  19. Gonen, B., Fang, X., El-Sheikh, E., Bagui, S., Wilde, N., Zimmermann, A. (2014). Ontological Support for the Evolution of Future Services Oriented Architectures. Transactions on Machine Learning and Artificial Intelligence, 2 (6), 77–90. doi: https://doi.org/10.14738/tmlai.26.784
  20. Grabusts, P., Borisov, A., Aleksejeva, L. (2015). Ontology-Based Classification System Development Methodology. Information Technology and Management Science, 18 (1), 129–134. doi: https://doi.org/10.1515/itms-2015-0020
  21. Thomsen, E., Read, F., Duncan, W., Malyuta, T., Smith, B. (2014). Ontological Support for Living Plan Specification, Execution and Evaluation. Semantic Technology in Intelligence, Defense and Security (STIDS), CEUR, 1304, 10–17.
  22. Breitsprecher, T., Codescu, M., Jucovschi, C., Kohlhase, M., Schröder, L., Wartzack, S. (2014). Towards Ontological Support for Principle Solutions in Mechanical Engineering. Frontiers in Artificial Intelligence and Applications, 427–432. doi: https://doi.org/10.3233/978-1-61499-438-1-427
  23. Beydoun, G., Low, G., García-Sánchez, F., Valencia-García, R., Martínez-Béjar, R. (2014). Identification of ontologies to support information systems development. Information Systems, 46, 45–60. doi: https://doi.org/10.1016/j.is.2014.05.002
  24. He, Y., Xiang, Z., Zheng, J., Lin, Y., Overton, J. A., Ong, E. (2018). The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability. Journal of Biomedical Semantics, 9 (1). doi: https://doi.org/10.1186/s13326-017-0169-2
  25. Simperl, E., Luczak-Rösch, M. (2013). Collaborative ontology engineering: a survey. The Knowledge Engineering Review, 29 (01), 101–131. doi: https://doi.org/10.1017/s0269888913000192
  26. Zhukovyts’kyy, I. (2017). Use of an automaton model for the designing of real-time information systems in the railway stations. Transport problems, 12 (4), 101–108.

Downloads

Published

2018-10-09

How to Cite

Skalozub, V., Ilman, V., & Shynkarenko, V. (2018). Ontological support formation for constructive-synthesizing modeling of information systems development processes. Eastern-European Journal of Enterprise Technologies, 5(4 (95), 55–63. https://doi.org/10.15587/1729-4061.2018.143968

Issue

Section

Mathematics and Cybernetics - applied aspects