Development of the method to operatively control quality of iron ore raw materials at open and underground extraction

Authors

  • Albert Azaryan Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine https://orcid.org/0000-0002-1381-579X
  • Andrey Gritsenko Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine
  • Annait Trachuk Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine
  • Dmitriy Shvets Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027, Ukraine https://orcid.org/0000-0001-5126-6405

DOI:

https://doi.org/10.15587/1729-4061.2018.144003

Keywords:

quality of mineral raw materials, logging of wells, gamma radiation, total iron, magnetic iron

Abstract

The main task of the mining industry is to improve the efficiency of extraction and processing of iron ore. One of the main factors contributing to solving the task is determining the content of iron in the ore body at the initial stage of production chain. Traditional methods of chemical analysis that are widely used at present to achieve this goal do not possess a sufficient degree of responsiveness and require about two hours to obtain the results. That typically does not make it possible to properly adjust the parameters of the technological process of ore processing, but only provides for the opportunity to ascertain the status of the production process at the time of sampling.

Existing methods of accomplishing this task, which possess a sufficient degree of efficiency, are based on the use of direct methods. These include the nuclear-physical (interaction between gamma-radiation and mountain mass), magnetometric (changing the relative magnetic permeability when interacting with magnetic iron), ultrasound (a change in the ultrasonic wave propagation in the examined material) methods.

In order to improve the accuracy of determining the percentage of a mineral component in the examined mountain mass, in this work we have improved the nuclear-physical method for determining the content of total iron in iron ore lumps. The improvement of the method makes it possible to enhance the accuracy of control over a mineral component in the studied material by 1.5 % by registering not only the gamma quanta reflected from the surface, but the absorbed particles as well. We have experimentally established the sensitivity level (K=1.32‒1.38), which characterizes a change in the intensity of the registered radiation due to a change in the content of iron in the irradiated material. We have also established the level of a statistical error (<0.65 %) in order to ensure the permissible measurement accuracy.

Based on a given method, we have proposed an information-measuring system for monitoring, analysis, and forecasting the qualitative characteristics of ore under conditions of an enrichment plant. The application of this system makes it possible for technological personnel to promptly intervene in the production process and to adjust the qualitative-quantitative parameters of ore

Author Biographies

Albert Azaryan, Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor

Department of modeling and software

Andrey Gritsenko, Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

Researcher

Research section

Annait Trachuk, Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of modeling and software

Dmitriy Shvets, Kryvyi Rih National University Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

Assistant

Department of modeling and software

References

  1. Lutsenko, I. (2016). Definition of efficiency indicator and study of its main function as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 24–32. doi: https://doi.org/10.15587/1729-4061.2016.85453
  2. Azaryan, A., Azaryan, V. (2015). Use of Bourger-Lambert-Bera law for the operative control and quality management of mineral raw materials. Metallurgical and Mining Industry, 1, 4–8.
  3. Kiran, K. U., Ravindraswami, K., Eshwarappa, K. M., Somashekarappa, H. M. (2015). Experimental and simulated study of detector collimation for a portable 3″ × 3″ NaI(Tl) detector system for in-situ measurements. Journal of Radiation Research and Applied Sciences, 8 (4), 597–605. doi: https://doi.org/10.1016/j.jrras.2015.07.006
  4. Sabharwal, A. D., Sandhu, B. S., Singh, B. (2009). Investigations of effect of target thickness and detector collimation on 662 keV multiply backscattered gamma photons. Radiation Measurements, 44 (4), 411–414. doi: https://doi.org/10.1016/j.radmeas.2009.06.010
  5. Azaryan, A. A., Azaryan, V. A., Trachuk, A. A. (2013). Quick response quality control of mineral raw materials in the pipeline. European Science and Technology. Materials of the V International scientific and practice conference. Munich, 325–331.
  6. Azaryan, A. (2015). Research of influence single crystal thickness NaJ (TL) on the intensity of the integrated flux of scattered gamma radiation. Metallurgical and Mining Industry, 2, 43–46.
  7. Kurth, H., Edwards, M. (2008). Use of on-belt analysers for improved process control of conveyed materials. Proceedings Metallurgical Plant Design and Operating Strategies (MetPlant 2008). Melbourne, 493–507.
  8. Minnett, R. C. A. (2010). The state of sampling practice in the South African minerals industry. Proceedings Sampling Conference. Melbourne, 31–50.
  9. Azaryan, A. A., Azaryan, V. A., Driga, V. V. (2011). Sistema operativnogo kontrolya kachestva zhelezistyh kvarcitov na konveyere. Kachestvo mineral'nogo syr'ya, 184–191.
  10. Azaryan, A. A., Driga, V. V., Shvydkiy, A. V. et. al. (2008). Analiz rezul'tatov ekspluatacii datchika zheleza magnitnogo v usloviyah GOKa «ArselorMittal Krivoy Rog». Metallurgicheskaya i gornorudnaya promyshlennost', 2, 111–113.
  11. Azaryan, A. A., Kucher, V. G., Shvec, D. V. (2017). Perspektivy postroeniya sistem avtomaticheskogo regulirovaniya processa magnitnoy separacii na baze pogruzhnyh analizatorov soderzhaniya magnitnogo zheleza. Kachestvo mineral'nogo syr'ya.
  12. Shvec, D. V. (2018). Avtomaticheskoe upravlenie processom izmel'cheniya magnetitovyh rud na osnove opredeleniya ih prochnosti. Kachestvo mineral'nogo syr'ya, 2.
  13. Azaryan, A. A., Dryga, V. V., Cybulevskiy, Yu. E. (2005). Issledovanie avtogeneratornogo metoda kontrolya soderzhaniya zheleza magnitnogo v produktah obogashcheniya. Kachestvo mineral'nogo syr'ya, 117–123.
  14. Sandomirskij, S. G. (2011). Perspectives of development of magnetic control of the large-size cast iron castings structure. Litiyo i Metallurgiya, 3 (62), 157–162.
  15. Sandomirskij, S. G. (2008). Magnetic control of the steel and cast iron articles structure. Modern state (review). Litiyo i Metallurgiya, 2 (46), 33–42.
  16. Porkuyan, O. V., Sotnikova, T. G. (2010). Kombinirovannyy metod opredeleniya otnositel'nogo soderzhaniya magnetita v tverdoy faze zhelezorudnoy pul'py. Vestnik Nac. tekhn. un-ta "KhPI", 12, 29–36.
  17. Morkun, V., Tron, V., Goncharov, S. (2015). Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of high-energy ultrasound. Metallurgical and Mining Industry, 2, 31–34. Available at: http://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_2/006Tron.pdf
  18. Morkun, V., Tcvirkun, S. (2014). Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry, 5, 11–14. Available at: http://www.metaljournal.com.ua/assets/Journal/3-MorkunTs.pdf
  19. Morkun, V., Morkun, N. (2018). Estimation of the Crushed Ore Particles Density in the Pulp Flow Based on the Dynamic Effects of High-Energy Ultrasound. Archives of Acoustics, 43 (1), 61–67. doi: https://doi.org/10.24425/118080
  20. Goncharov, S. A. (2009). Povyshenie effektivnosti obogatitel'nyh tekhnologiy putem vozdeystviya vysokoenergeticheskogo ul'trazvuka na pererabatyvaemoe syr'e. Visnyk Kryvorizkoho natsionalnoho universytetu, 23, 236–239.
  21. Xu, Y., Guan, Z., Jin, Y., Tian, Y., Liu, Y., Xu, C., Shi, Y. (2017). Study of the ultrasonic propagation law in the gas-liquid two-phase flow of deepwater riser through numerical simulation. Journal of Petroleum Science and Engineering, 159, 419–432. doi: https://doi.org/10.1016/j.petrol.2017.09.051
  22. Kundu, S., Kumari, A., Pandit, D. K., Gupta, S. (2017). Love wave propagation in heterogeneous micropolar media. Mechanics Research Communications, 83, 6–11. doi: https://doi.org/10.1016/j.mechrescom.2017.02.003
  23. Louisnard, O. (2012). A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. Ultrasonics Sonochemistry, 19 (1), 56–65. doi: https://doi.org/10.1016/j.ultsonch.2011.06.007
  24. Louisnard, O. (2012). A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures. Ultrasonics Sonochemistry, 19 (1), 66–76. doi: https://doi.org/10.1016/j.ultsonch.2011.06.008
  25. Shayakhmetov, B., Issagulov, A., Baisanov, A., Karakeyeva, G., Issagulovа, D. (2014). Studying phase structure of burned ferrous manganese ores by method of nuclear gamma – resonance spectroscopy. Metallugiyja, 53 (2), 231–234.
  26. Dzyublik, A. Ya., Sadykov, E. K., Petrov, G. I., Arinin, V. V., Vagizov, F. H., Spivak, V. Yu. (2013). Mossbauer forward scattering spectra of ferromagnets in radio-frequency magnetic field. Yaderna fizyka ta enerhetyka, 13 (1), 73–82.
  27. Viana, S. A. A., Souza, A. S., Araujo, W. C., Ribeiro, R. V. Iron Ore Composition Monitoring Using an Automated On-Line X-Ray Spectrometer Analyzer. Available at: http://www.apc-analytics.com/sites/default/files/pdf_documents/isa_show_2008_-_solas_brauer_0.pdf
  28. Lutsenko, I., Oksanych, I., Shevchenko, I., Karabut, N. (2018). Development of the method for modeling operational processes for tasks related to decision making. Eastern-European Journal of Enterprise Technologies, 2 (4 (92)), 26–32. doi: https://doi.org/10.15587/1729-4061.2018.126446
  29. Lutsenko, I., Fomovskaya, E., Koval, S., Serdiuk, O. (2017). Development of the method of quasi-optimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 52–60. doi: https://doi.org/10.15587/1729-4061.2017.107542
  30. Cvirkun, S. L. (2014). Avtomaticheskaya sistema soprovozhdeniya krupnokuskovoy rudy na konveyernoy lente. Visnyk Kryvorizkoho natsionalnoho universytetu, 36, 229–234.
  31. Azaryan, A. A., Gritsenko, A. N. (2011). Mobile station for logging of blast holes. Novi technologiyi, 4, 52–55.
  32. Arena, T., McTiernan, J. (2011). On-belt analysis at Sepon Copper operation. Proceedings Metallurgical Plant Design and Operating Strategies (MetPlant 2011). Melbourne, 527–535.
  33. Delwig, C., Fettweis, H., Schnitzler, T., Wienströer, S., Ferguson, S., Noble, G. (2011). Use of an online elemental analyser to optimize the sinter process at ThyssenKrupp Steel Europe, Duisburg, Germany. Proceedings Iron Ore Conference. Melbourne, 381–388.
  34. Azaryan, A., Pikilnyak, A., Shvets, D. (2015). Complex automation system of iron ore preparation for beneficiation. Metallurgical and mining industry, 8, 64–66. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_8/011Azaryan.pdf

Downloads

Published

2018-10-31

How to Cite

Azaryan, A., Gritsenko, A., Trachuk, A., & Shvets, D. (2018). Development of the method to operatively control quality of iron ore raw materials at open and underground extraction. Eastern-European Journal of Enterprise Technologies, 5(5 (95), 13–19. https://doi.org/10.15587/1729-4061.2018.144003

Issue

Section

Applied physics