Method of integral estimation of channel state in the multiantenna radio communication systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.144085

Keywords:

radio communication, neural networks, fuzzy sets, computational complexity, frequency response, pulse response

Abstract

A method of integrated estimation of channel state in multiantenna radio communication systems was developed. The distinguishing feature of the proposed method is estimation for several indicators, namely the bit error probability in the channel, frequency and pulse response of the channel state. After obtaining of the channel estimate for each indicator, a generalized channel state estimate is formed. Formation of the channel state estimate for each of the estimation indicators takes place in a separate layer of the neural network using the apparatus of fuzzy sets after which a generalized estimate is formed at the neural network output. Development of the proposed method was determined by necessity to raise speed of estimation of the channel state in multiantenna radio communication systems at an acceptable computational complexity. According to the results of the study, it has been established that the proposed method makes it possible to increase speed of estimation of channel state in multiantenna systems on average up to 30 % depending on the channel state while accuracy of the channel state estimation decreases by 5‒7 % because of reduced informativeness of estimation (because of using the apparatus of fuzzy sets) and is able to adapt to the signaling situation in the channel by training the neural network. Neural network training takes place on the basis of a training sequence and completes adaptation to the channel state after 10‒12 iterations of training. It is advisable to apply this method in radio stations with a programmable architecture to improve their interference immunity by reducing time for making decision on the channel state.

Author Biographies

Svitlana Kalantaievska, Military institute of telecommunications and informatization named after Heroes of Kruty Moskovska str., 45/1, Kyiv, Ukraine, 01011

Adjunct

Department of Scientific and organizational

Hennadii Pievtsov, Ivan Kozhedub Kharkiv National Air Force University Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Research and Scientific work

Oleksii Kuvshynov, Ivan Chernyakhovsky National Defense University of Ukraine Povitrofloski ave., 28, Kyiv, Ukraine, 03049

Doctor of Technical Sciences, Professor, Deputy Chief

Educational-Scientific Institute

Andrii Shyshatskyi, Central scientifically-reserch institute of arming and military equipment of the Armed Forces of Ukraine Povitrofloski ave., 28, Kyiv, Ukraine, 03168

PhD, Researcher

Serhii Yarosh, Ivan Kozhedub Kharkiv National Air Force University Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Military Sciences, Professor, Head of Department

Department of tactics of anti-aircraft missile troops

Serhiy Gatsenko, Ivan Chernyakhovsky National Defense University of Ukraine Povitrofloski ave., 28, Kyiv, Ukraine, 03049

Senior Lecturer

Department of Space Systems

Hryhorii Zubrytskyi, Ivan Kozhedub Kharkiv National Air Force University Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor, Leading Researcher

Ruslan Zhyvotovskyi, Central scientifically-reserch institute of arming and military equipment of the Armed Forces of Ukraine Povitrofloski ave., 28, Kyiv, Ukraine, 03168

PhD, Head of Department

Research department for the development of anti-aircraft missile systems and complexes

Sergii Petruk, Central scientifically-reserch institute of arming and military equipment of the Armed Forces of Ukraine Povitrofloski ave., 28, Kyiv, Ukraine, 03168

Senior Researcher

Research department for the development of anti-aircraft missile systems and complexes

Vitalii Zuiko, Ivan Chernyakhovsky National Defense University of Ukraine Povitrofloski ave., 28, Kyiv, Ukraine, 03049

PhD, Associate Professor

Department of Space Systems

References

  1. Slyusar, V. (2005). Cistemy MІMO: principy postroeniya i obrabotka signalov. Elektronika: Nauka, Tekhnologiya, Biznes, 8, 52–58.
  2. Kuvshynov, O. V. (2009). Adaptyvne upravlinnia zasobamy zavadozakhystu viyskovykh system radiozviazku. Zbirnyk naukovykh prats VIKNU, 17, 125–130.
  3. Dahiya, S., Singh, A. K. (2018). Channel estimation and channel tracking for correlated block-fading channels in massive MIMO systems. Digital Communications and Networks, 4 (2), 138–147. doi: https://doi.org/10.1016/j.dcan.2017.07.006
  4. Khan, I., Singh, D. (2018). Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU – International Journal of Electronics and Communications, 89, 181–190. doi: https://doi.org/10.1016/j.aeue.2018.03.038
  5. Vovchenko, V. S. (2015). Statistical estimation of losses in communication channels of standard lte and lte-advanced on the basis of technology MIMO. Systemy obrobky informatsiyi, 7 (132), 159–163.
  6. Mardoyan, G. R. (2015). MIMO channel estimation for pseudo-coherent communication systems. V mire nauchnykh otkrytiy, 2 (62), 465–478. doi: https://doi.org/10.12731/wsd-2015-2-27
  7. Chiong, C. W. R., Rong, Y., Xiang, Y. (2016). Blind channel estimation and signal retrieving for MIMO relay systems. Digital Signal Processing, 52, 35–44. doi: https://doi.org/10.1016/j.dsp.2016.02.007
  8. Wang, Y., Chen, K., Yu, J., Xiong, N., Leung, H., Zhou, H., Zhu, L. (2017). Dynamic propagation characteristics estimation and tracking based on an EM-EKF algorithm in time-variant MIMO channel. Information Sciences, 408, 70–83. doi: https://doi.org/10.1016/j.ins.2017.04.035
  9. Kuhn, V. (2006). Wireless Communications over MIMO Channels: Applications to CDMA and Multiple Antenna Systems. Chichester, United Kingdom: John Wiley Sons, 363.
  10. Shaheen, E. M., Samir, M. (2013). Jamming Impact on the Performance of MIMO Space Time Block Coding Systems over Multi-path Fading Channel. REV Journal on Electronics and Communications, 3 (1-2). doi: https://doi.org/10.21553/rev-jec.56
  11. Zhou, X., Zhuge, Q., Qiu, M., Xiang, M., Zhang, F., Wu, B. et. al. (2018). Bandwidth variable transceivers with artificial neural network-aided provisioning and capacity improvement capabilities in meshed optical networks with cascaded ROADM filtering. Optics Communications, 409, 23–33. doi: https://doi.org/10.1016/j.optcom.2017.09.021
  12. Sarma, K. K., Mitra, A. (2012). Modeling MIMO channels using a class of complex recurrent neural network architectures. AEU – International Journal of Electronics and Communications, 66 (4), 322–331. doi: https://doi.org/10.1016/j.aeue.2011.08.008
  13. Seyman, M. N., Taşpınar, N. (2013). Channel estimation based on neural network in space time block coded MIMO–OFDM system. Digital Signal Processing, 23 (1), 275–280. doi: https://doi.org/10.1016/j.dsp.2012.08.003
  14. Zhang, L., Zhang, X. (2007). MIMO channel estimation and equalization using three-layer neural networks with feedback. Tsinghua Science and Technology, 12 (6), 658–662. doi: https://doi.org/10.1109/tst.2007.6071814
  15. Gogoi, P., Kumar Sarma, K. (2012). Channel Estimation Technique for STBC coded MIMO System with Multiple ANN Blocks. International Journal of Computer Applications, 50 (13), 10–14. doi: https://doi.org/10.5120/7830-1018
  16. Neumann, D., Wiese, T., Utschick, W. (2018). Learning the MMSE Channel Estimator. IEEE Transactions on Signal Processing, 1–1. doi: https://doi.org/10.1109/tsp.2018.2799164
  17. He, H., Wen, C.-K., Jin, S., Li, G. Y. (2018). Deep Learning-based Channel Estimation for Beamspace mmWave Massive MIMO Systems. IEEE Wireless Communications Letters, 1–1. doi: https://doi.org/10.1109/lwc.2018.2832128
  18. Nayal, N., Sharma, K. (2015). Channel Estimation in Long Term Evolution. International Journal of Computer Science And Technology, 6 (3), 230–234.
  19. Cai, J., Li, Y., Hu, Y. (2018). Deep convolutional neural network based antenna selection in multiple-input multiple-output system. Young Scientists Forum 2017. doi: https://doi.org/10.1117/12.2317603
  20. Reshamwala, N. S., Suratia, P. S., Shah, S. K. (2014). Artificial Neural Network trained by Genetic Algorithm for Smart MIMO Channel Estimation for Downlink LTE-Advance System. International Journal of Computer Network and Information Security, 6 (3), 10–19. doi: https://doi.org/10.5815/ijcnis.2014.03.02
  21. Malik, S., Kumar, S. (2017). Optimized Phase Noise Compensation Technique using Neural Network. Indian Journal of Science and Technology, 10 (5), 1–6. doi: https://doi.org/10.17485/ijst/2017/v10i5/104348
  22. Zhang, P., Chen, S., Hanzo, L. (2015). Two-Tier Channel Estimation Aided Near-Capacity MIMO Transceivers Relying on Norm-Based Joint Transmit and Receive Antenna Selection. IEEE Transactions on Wireless Communications, 14 (1), 122–137. doi: https://doi.org/10.1109/twc.2014.2334325
  23. Bai, L., Wang, C.-X., Huang, J., Xu, Q., Yang, Y., Goussetis, G. et. al. (2018). Predicting Wireless MmWave Massive MIMO Channel Characteristics Using Machine Learning Algorithms. Wireless Communications and Mobile Computing, 2018, 1–12. doi: https://doi.org/10.1155/2018/9783863
  24. Khan, I., Singh, M., Singh, D. (2018). Compressive Sensing-based Sparsity Adaptive Channel Estimation for 5G Massive MIMO Systems. Applied Sciences, 8 (5), 754. doi: https://doi.org/10.3390/app8050754
  25. Tang, R., Zhou, X., Wang, C. (2018). A Haar Wavelet Decision Feedback Channel Estimation Method in OFDM Systems. Applied Sciences, 8 (6), 877. doi: https://doi.org/10.3390/app8060877
  26. Kulsoom, F., Vizziello, A., Chaudhry, H. N., Savazzi, P. (2018). Pilot reduction techniques for sparse channel estimation in massive MIMO systems. 2018 14th Annual Conference on Wireless On-Demand Network Systems and Services (WONS). doi: https://doi.org/10.23919/wons.2018.8311671
  27. Kumari, D. L., Prasa, M. N. (2017). A review paper on performance analysis of mimo based ofdma system under fading channel. International Journal of Electronics and Communication Engineering and Technology (IJECET), 8 (1), 32–42.
  28. Kuvshynov, O. V. (2011). Alhorytmy kontroliu stanu kanalu zviazku v umovakh skladnoi radioelektronnoi obstanovky. Systemy ozbroiennia i viyskova tekhnika, 2 (26), 189–192.
  29. Zhyvotovskyi, R., Shyshatskyi, A., Petruk, S. (2017). Structural-semantic model of communication channel. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2017.8246454
  30. Slyusar, V. I., Slyusar, I. I. (2003). Sovmestnoe ocenivanie neskol'kih parametrov signalov v sistemah svyazi s cifrovym diagrammoobrazovaniem. Materialy 7-go yubileynogo mezhdunarodnogo molodezhnogo foruma "Radioelektronika i molodezh' v ХХI veke". Kharkiv, 128.
  31. Digital Transmission: Carrier-to-Noise Ratio, Signal-to Noise Ratio and Modulation Error Ratio (2006). White Paper, Cisco.
  32. Chi, C.-Y., Chen, C.-Y., Chen, C.-H., Feng, C.-C. (2003). Batch processing algorithms for blind equalization using higher-order statistics. IEEE Signal Processing Magazine, 20 (1), 25–49. doi: https://doi.org/10.1109/msp.2003.1166627
  33. Jitendra, K. T., Tong, L., Ding, Z. (2000). Single-User Channel Estimation and Equalization. IEEE Signal Processing Magazine, 17–28.
  34. Shyshatskyi, A. V., Liutov, V. V. (2015). Analiz isnuiuchykh metodiv otsinky stanu kanalu zviazku. VI Naukovo-tekhnichna konferentsiya “Problemni pytannia rozvytku ozbroiennia ta viyskovoi tekhniky”. Kyiv, 398.
  35. Gu, Q. (2005). RF System Design of Transceivers for Wireless Communications. Springer. doi: https://doi.org/10.1007/b104642
  36. Hranac, R. (2017). Broadband: Is MER Overrated? Communications Technology.
  37. Mahmoud, H. A., Arslan, H. (2009). Error vector magnitude to SNR conversion for nondata-aided receivers. IEEE Transactions on Wireless Communications, 8 (5), 2694–2704. doi: https://doi.org/10.1109/twc.2009.080862
  38. Coded Modulation Library. Available at: http://www.iterativesolutions.com/
  39. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikacii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnica: “UNIVERSUM”, 320.
  40. Shmatok, S. O., Podchashynskyi, Yu. O., Shmatok, O. S. (2007). Matematychni ta prohramni zasoby modeliuvannia prystroiv i system upravlinnia. Vykorystannia nechitkykh mnozhyn ta neironnykh merezh. Zhytomyr: ZhDTU, 280.
  41. Parashchuk, I. B., Ivanov, Yu. N., Romanenko, P. G. (2010). Neyrosetevye metody v zadachah modelirovaniya i analiza effektivnosti funkcionirovaniya setey svyazi. Sankt Peterburg: ВАС, 104.
  42. Haykin, S. (2006). Neyronnye seti: polniy kurs. Moscow: Vil'yams, 1104.
  43. Andrews, J. G. (2005). Modulation, coding and signal processing for wireless communications – Interference cancellation for cellular systems: a contemporary overview. IEEE Wireless Communications, 12 (2), 19–29. doi: https://doi.org/10.1109/mwc.2005.1421925
  44. Goldsmith, A., Jafar, S. A., Jindal, N., Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21 (5), 684–702. doi: https://doi.org/10.1109/jsac.2003.810294
  45. Shishatskiy, A. V., Zhuk, O. G., Lutov, V. V., Zhivotovsky, R. M. (2016). Method of estimation of the parameters of signals with digital modulation types. Nauka i tekhnika Povitrianykh Syl Zbroinykh Syl Ukrainy, 4 (25), 117–121.
  46. Rassel, S., Norvig, P. (2006). Iskusstvenniy intellekt: sovremenniy podhod. Moscow: Izdatel'skiy dom “Vil'yams”, 1408.
  47. Neyronnye seti. Available at: http://neurocomp.ru/2009/07/01/nejronnye-seti/
  48. Shushkevich, G. Ch., Shushkevich, S. V. (2001). Vvedenie v MathCAD 2000. Grodno, 138.
  49. Sliusar, V. I., Hatsenko, S. S., Shyshatskyi, A. V. (2017). Pat. No. 123110 UA. Sposib otsiniuvannia syhnalnoi obstanovky v umovakh nevyznachenosti. No. u201708576; declareted: 21.08.2017; published: 12.02.2018, Bul. No. 3.
  50. Chumak, V. K., Shyshatskyi, A. V., Karlov, V. D., Zhyvotovskyi, R. M., Romanenko, I. O., Kuvshynov, O. V. (2016). Systema z mnozhynoiu vkhodiv ta mnozhynoiu vykhodiv (MIMO) pidvyshchenoi zavadozakhyshchenosti: Pat. No. 113747 UA. No. u201608699; declareted: 10.08.2016; published: 10.02.2017, Bul. No. 3.

Downloads

Published

2018-10-10

How to Cite

Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S., Zubrytskyi, H., Zhyvotovskyi, R., Petruk, S., & Zuiko, V. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5(9 (95), 60–76. https://doi.org/10.15587/1729-4061.2018.144085

Issue

Section

Information and controlling system