Development of fatigue test technology of sheet automobile materials

Authors

  • German Pachurin Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950, Russian Federation https://orcid.org/0000-0001-5966-2330
  • Diana Goncharova Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950, Russian Federation
  • Alexey Filippov Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950, Russian Federation
  • Sofia Shevchenko Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002, Russian Federation https://orcid.org/0000-0001-5983-2563
  • Mariia Mukhina Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002, Russian Federation https://orcid.org/0000-0002-9219-349X
  • Nikolay Kuzmin Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950, Russian Federation
  • Viktor Pachurin LLC "NAU standard" Gaugelya str., 21/59, Nizhny Novgorod, Russa, 603139, Russian Federation https://orcid.org/0000-0002-4760-3672
  • Yury Matveyev Volga state university of water transport Nesterova str., 5, Nizhny Novgorod, Russia, 603950, Russian Federation
  • Lubov Kutepova Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002, Russian Federation https://orcid.org/0000-0002-3175-4978
  • Zhanna Smirnova Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2018.144524

Keywords:

fatigue tests, cyclic life, automobile structural materials, current sample deflection

Abstract

Ensuring the operability of the cars’ parts and components is one of the most topical problems in the modern automotive industry. Most of the car parts are under cyclic loads leading to materials’ destruction. Therefore, one of the important factors affecting the performance of products is the fatigue strength of the material. In this paper, the existing methods of fatigue tests are analyzed, their advantages and disadvantages are presented. The methodology of fatigue tests of sheet automobile materials was developed. The main idea of this methodology is that it enables to study the fatigue of sheet automobile materials based on single-plane pure bending. This scheme is very close to the conditions of the actual load of car body structural elements. The results of the study of fatigue strength obtained using this methodology allow studying the kinetics of the failure process, fixing the beginning of macrofailure, crack growth rate and, as a consequence, maintainability of the structure.

Comparative tests enable to determine the material that best meets the operating requirements and provides the reduction of the failure rate of the car metal structures.

In this paper, important characteristics of fatigue strength were obtained for a number of automobile structural steels 08kp and 20kp: service life to complete failure, fatigue limit, period to fatigue crack nucleation and rate of further propagation and, as a consequence, maintainability of the structure. So, for example, the number of cycles for 08kp steel to complete failure (262,000 cycles) and the period to fatigue crack nucleation (82,000 cycles) is greater, and the rate of further growth (5.38.10-5 mm/cycle) is lower than for 20kp steel (174,000, 68,000 cycles and 8.86.10-5 mm/cycle, correspondingly). Although these parameters were obtained at higher stress (265 MPa) for 08kp steel against only 235 MPa for 20kp steel. This explains the operating advantage of 08kp steel against 20kp steel in the process of car design.

The obtained data enable to prevent failure of structural elements and parts under cyclic loads at the stage of car maintenance, and as a consequence, to increase the car operation safety, and to reduce the cost of repair

Author Biographies

German Pachurin, Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950

Doctor of Technical Sciences

Department of Industrial Safety, Ecology and Chemistry

Diana Goncharova, Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950

Department of Automobile Transport

Alexey Filippov, Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950

PhD

Department of Industrial Safety, Ecology and Chemistry

Sofia Shevchenko, Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002

PhD

Department of Technology Service and Technological Education

Mariia Mukhina, Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002

PhD

Department of Technology Service and Technological Education

Nikolay Kuzmin, Nizhny Novgorod State Technical University named after R. A. Alekseev Minina str., 24, Nizhny Novgorod, Russia, 603950

Doctor of Technical Sciences

Department of Automobile Transport

Viktor Pachurin, LLC "NAU standard" Gaugelya str., 21/59, Nizhny Novgorod, Russa, 603139

Executive Director

Yury Matveyev, Volga state university of water transport Nesterova str., 5, Nizhny Novgorod, Russia, 603950

Doctor of Technical Sciences

Lubov Kutepova, Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002

PhD

Department of Technology Service and Technological Education

Zhanna Smirnova, Minin Nizhny Novgorod State Pedagogical University Ulyanova str., 1, Nizhny Novgorod, Russia, 603002

PhD

Department of Technology Service and Technological Education

References

  1. Terent'ev, V. F. (2013). Ustalost' vysokoprochnyh metallicheskih materialov. Moscow: IMET RAN – CIAM, 515.
  2. Bunatyan, G. V. (2010). Krepezhnye izdeliya. Perspektivy – v konsolidacii. Metizy, 01 (22), 12–15.
  3. Filippov, A. A., Pachurin, G. V., Naumov, V. I., Kuz’min, N. A. (2016). Low-Cost Treatment of Rolled Products Used to Make Long High-Strength Bolts. Metallurgist, 59 (9-10), 810–817. doi: https://doi.org/10.1007/s11015-016-0177-y
  4. Galkin, V. V. (2014). Strukturno-deformacionnaya ocenka uprochneniya metalla v mnogooperacionnyh processah holodnogo deformirovaniya. Uprochnyayushchie tekhnologii i pokrytiya, 8, 13–20.
  5. Pachurin, G. V., Shevchenko, S. M., Mukhina, M. V., Kutepova, L. I., Smirnova, J. V. (2016). The Factor of Structure and Mechanical Properties in the Production of Critical Fixing Hardware 38XA. Tribology in Industry, 38 (3), 385–391.
  6. Pachurin, G. V., Vlasov, V. A. (2014). Mechanical Properties of Sheet Structural Steels at Operating Temperatures. Metal Science and Heat Treatment, 56 (3-4), 219–223. doi: https://doi.org/10.1007/s11041-014-9735-8
  7. Galkin, V. V. (2014). K voprosu mikrostrukturnoy ocenki raspredeleniya plasticheskih deformaciy metalla holodno-vysazhennyh krepezhnyh izdeliy. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 8, 11–14.
  8. Gurov, V. D., Vladimirov, A. G. (2005). Uluchshenie kachestva krepezhnyh izdeliy i snizhenie raskhoda metalla pri proizvodstve. Stal', 12, 52–54.
  9. Novikov, I. I., Zolotorevskiy, V. S., Portnoy, V. K., Belov, N. A., Livanov, D. V., Medvedeva, S. V. et. al. (2009). Metallovedenie. Vol. 1. Moscow: Izdatel'skiy Dom MISiS, 496.
  10. Pachurin, G. V., Shevchenko, S. M., Filippov, A. A., Mukhina, M. V., Kuzmin, N. A. (2018). Defining rolled metal performance for cold bolt upsetting (bolt head). IOP Conference Series: Materials Science and Engineering, 327, 032040. doi: https://doi.org/10.1088/1757-899x/327/3/032040
  11. Romanovskaya, E. V. (2014). Sozdanie novogo produkta na osnove sobstvennyh NIOKR. Vestnik of Minin University, 1.
  12. Furuya, Y. (2013). Visualization of internal small fatigue crack growth. Materials Letters, 112, 139–141. doi: https://doi.org/10.1016/j.matlet.2013.09.015
  13. Furuya, Y., Matsuoka, S. (2003). The Effect of Modified-ausforming on Giga-cycle Fatigue Properties in Si-Mn Steels. Tetsu-to-Hagane, 89 (10), 1082–1089. doi: https://doi.org/10.2355/tetsutohagane1955.89.10_1082
  14. Estrin, Y., Vinogradov, A. (2013). Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 61 (3), 782–817. doi: https://doi.org/10.1016/j.actamat.2012.10.038
  15. Lukáš, P., Kunz, L., Navrátilová, L., Bokůvka, O. (2011). Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region. Materials Science and Engineering: A, 528 (22-23), 7036–7040. doi: https://doi.org/10.1016/j.msea.2011.06.001

Downloads

Published

2018-10-16

How to Cite

Pachurin, G., Goncharova, D., Filippov, A., Shevchenko, S., Mukhina, M., Kuzmin, N., Pachurin, V., Matveyev, Y., Kutepova, L., & Smirnova, Z. (2018). Development of fatigue test technology of sheet automobile materials. Eastern-European Journal of Enterprise Technologies, 5(12 (95), 31–37. https://doi.org/10.15587/1729-4061.2018.144524

Issue

Section

Materials Science