“Green” synthesis of nanoparticles of precious metals: antimicrobial and catalytic properties

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.144602

Keywords:

aqueous extract, componential composition, grapes, recovery, nitrophenol, antibacterial properties, antioxidant activity

Abstract

The paper presents the use of agricultural products, namely grape skins, in the “green” synthesis of monometallic (Au, Ag) and bimetallic (Au-Ag) nanoparticles (NPs) from aqueous solutions of metal ions of the corresponding precursors. At present, there exist urgent problems of utilization of waste from the agro-industrial complex, rational use of nature and transition to the use of environment-friendly and energy-efficient technologies. Therefore, there is a tendency to use “green” technologies in obtaining nanomaterials that are considered environment-friendly and resource-saving.

The study has proved the efficiency of using food waste (grape skins) as a reducing and stabilizing agent in forming nanoparticles of precious metals of mono- and bimetallic structures. Biological raw materials were extracted in an aqueous medium under a short-term effect of low-temperature plasma discharges. On the basis of the complex analysis of the extract composition, it was proved that the hydroxyl, carbonyl and carboxyl functional groups of the organic compounds of the grape skin extract are responsible for the recovery of the metal ions and stabilization of the resulting NPs.

The research has proved that mono- and bimetallic NPs are formed with the following peaks: for Ag0max=440 nm), Au0max=540 nm), and Ag-Au (λmax=510 nm). The size and stability of the nanoparticles obtained by the “green” synthesis were assessed in comparison with the same parameters for the plasmochemical method of nanoparticles’ formation. The study has revealed antibacterial, catalytic and anti-corrosion properties of the synthesized nanoparticles. The resulting monometallic (Au, Ag) and bimetallic (Au–Ag) nanoparticles show excellent catalytic activity while recovering p-nitrophenol (4-NPh) to p-aminophenol (4-APh) in the presence of NaBH4. The synthesized NPs demonstrate their antibacterial activity against gram-positive and gram-negative bacteria. The findings allow to expand the practical application of metal nanoparticles in various industries and enhance the processing and reuse of non-liquid waste

Author Biographies

Margarita Skiba, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of inorganic substances and Ecology

Viktoria Vorobyova, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Physical Chemistry

Alexander Pivovarov, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor, Rector

Department of Inorganic Materials Technology and Ecology

Anastasiia Shakun, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Physical Chemistry

Elena Gnatko, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

Senior Lecturer

Department of Applied Mechanics

Inna Trus, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Ecology and Technology of Plant Polymers

References

  1. Sharma, G., Kumar, D., Kumar, A., Al-Muhtaseb, A. H., Pathania, D., Naushad, M., Mola, G. T. (2017). Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Materials Science and Engineering: C, 71, 1216–1230. doi: https://doi.org/10.1016/j.msec.2016.11.002
  2. Han, P., Martens, W., Waclawik, E. R., Sarina, S., Zhu, H. (2018). Metal Nanoparticle Photocatalysts: Synthesis, Characterization, and Application. Particle & Particle Systems Characterization, 35 (6), 1700489. doi: https://doi.org/10.1002/ppsc.201700489
  3. Liu, X., Astruc, D. (2017). From Galvanic to Anti-Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science. Advanced Materials, 29 (16), 1605305. doi: https://doi.org/10.1002/adma.201605305
  4. Solomon, M. M., Gerengi, H., Umoren, S. A. (2017). Carboxymethyl Cellulose/Silver Nanoparticles Composite: Synthesis, Characterization and Application as a Benign Corrosion Inhibitor for St37 Steel in 15% H2SO4 Medium. ACS Applied Materials & Interfaces, 9 (7), 6376–7389. doi: https://doi.org/10.1021/acsami.6b14153
  5. Nelson, D., Seabra, A. B. (2018). Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications. Current Nanoscience, 14 (2), 82–94. doi: https://doi.org/10.2174/1573413714666171207160637
  6. Peralta-Videa, J. R., Huang, Y., Parsons, J. G., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., Gardea-Torresdey, J. L. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering, 1 (4). doi: https://doi.org/10.1007/s41204-016-0004-5
  7. Saratale, R. G., Saratale, G. D., Shin, H. S., Jacob, J. M., Pugazhendhi, A., Bhaisare, M., Kumar, G. (2017). New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environmental Science and Pollution Research, 25 (11), 10164–10183. doi: https://doi.org/10.1007/s11356-017-9912-6
  8. Devi, T. B., Ahmaruzzaman, M. (2017). Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: A green and efficient approach for wastewater treatment. Chemical Engineering Journal, 317, 726–741. doi: https://doi.org/10.1016/j.cej.2017.02.082
  9. Sun, L., Yin, Y., Lv, P., Su, W., Zhang, L. (2018). Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Advances, 8 (8), 3964–3973. doi: https://doi.org/10.1039/c7ra13650a
  10. Ingale, A. G., Chaudhari, A. N. (2013). Biogenic Synthesis of Nanoparticles and Potential Applications: An Eco- Friendly Approach. Journal of Nanomedicine & Nanotechnology, 04 (02). doi: https://doi.org/10.4172/2157-7439.1000165
  11. Chyhyrynets, O. E., Fateev, Y. F., Vorobiova, V. I., Skyba, M. I. (2016). Study of the Mechanism of Action of the Isopropanol Extract of Rapeseed Oil Cake on the Atmospheric Corrosion of Copper. Materials Science, 51 (5), 644–651. doi: https://doi.org/10.1007/s11003-016-9886-4
  12. Vorobyova, V., Chygyrynets’, O., Skiba, M., Zhuk, T., Kurmakova, І., Bondar, О. (2018). A comprehensive study of grape pomace extract and its active components as effective vapour phase corrosion inhibitor of mild steel. International Journal of Corrosion and Scale Inhibition, 7 (2), 185–202. doi: https://doi.org/10.17675/2305-6894-2018-7-2-6
  13. Vorobyova, V., Chygyrynets’, O., Skiba, M. (2018). 4-hydroxy-3-methoxybenzaldehyde as a volatile inhibitor on the atmospheric corrosion of carbon steel. Journal of Chemical Technology and Metallurgy, 53 (2), 336–345.
  14. Vorobyova, V., Chygyrynets, O., Skiba, M., Kurmakova, І., Bondar, O. (2017). Self-assembled monoterpenoid phenol as vapor phase atmospheric corrosion inhibitor of carbon steel. International Journal of Corrosion and Scale Inhibition, 6 (4), 485–503. doi: https://doi.org/10.17675/2305-6894-2017-6-4-8
  15. Ulug, B., Haluk Turkdemir, M., Cicek, A., Mete, A. (2015). Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 153–161. doi: https://doi.org/10.1016/j.saa.2014.06.142
  16. Abdelghany, A. M., Abdelrazek, E. M., Badr, S. I., Abdel-Aziz, M. S., Morsi, M. A. (2017). Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 21 (5), 528–537. doi: https://doi.org/10.1016/j.jscs.2015.10.002
  17. Irimia, A., Ioanid, G. E., Zaharescu, T., Coroabă, A., Doroftei, F., Safrany, A., Vasile, C. (2017). Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds. Radiation Physics and Chemistry, 130, 52–61. doi: https://doi.org/10.1016/j.radphyschem.2016.07.028
  18. Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolenko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, 85 (5), 1339–1350. doi: https://doi.org/10.1134/s1070363215050497
  19. Skiba, M., Pivovarov, A., Makarova, A., Pasenko, O., Khlopytskyi, A., Vorobyova, V. (2017). Plasma-chemical formation of silver nanodispersion in water solutions. Eastern-European Journal of Enterprise Technologies, 6 (6 (90)), 59–65. doi: https://doi.org/10.15587/1729-4061.2017.118914
  20. Pivovarov, О. А., Skіba, М. І., Makarova, А. K., Vorobyova, V. І., Pasenko, О. О. (2017). Plasma-chemical obtaining of silver nanoparticles in the presence of sodium alginate. Voprosy khimii i khimicheskoi tekhnologii, 6 (115), 82–88.
  21. Taylor, P. L., Ussher, A. L., Burrell, R. E. (2005). Impact of heat on nanocrystalline silver dressings. Biomaterials, 26 (35), 7221–7229. doi: https://doi.org/10.1016/j.biomaterials.2005.05.040
  22. Sadeghi, B., Jamali, M., Kia, Sh., Amini nia, A., Ghafar, S. (2010). Synthesis and characterization of silver nanoparticles for antibacterial activity. International Journal of Nano Dimension, 1 (2), 119–124. doi: https://doi.org/10.7508/IJND.2010.02.004
  23. Farhadi S. Ajerloo, B., Mohammadi, A. (2017). Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles by using grapes fruit extract and study of antibacterial and catalytic effects. International Journal of Nano Dimension, 8 (1), 49–60. doi: https://doi.org/10.22034/IJND.2017.24376
  24. Krishnaswamy, K., Vali, H., Orsat, V. (2014). Value-adding to grape waste: Green synthesis of gold nanoparticles. Journal of Food Engineering, 142, 210–220. doi: https://doi.org/10.1016/j.jfoodeng.2014.06.014
  25. Yallappa, S., Manjanna, J., Dhananjaya, B. L. (2015). Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 236–243. doi: https://doi.org/10.1016/j.saa.2014.08.030
  26. Kuppusamy, P., Ilavenil, S., Srigopalram, S., Kim, D. H., Govindan, N., Maniam, G. P. et. al. (2017). Synthesis of Bimetallic Nanoparticles (Au–Ag Alloy) Using Commelina nudiflora L. Plant Extract and Study its on Oral Pathogenic Bacteria. Journal of Inorganic and Organometallic Polymers and Materials, 27 (2), 562–568. doi: https://doi.org/10.1007/s10904-017-0498-8
  27. Khatami, M., Alijani, H., Nejad, M., Varma, R. (2018). Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products. Applied Sciences, 8 (3), 411. doi: https://doi.org/10.3390/app8030411
  28. Pivovarov, A. A., Skiba, M. I., Makarova, A. K., Vorobyova, V. I. (2017). Obtaining of bimetallic nanoparticles by using plasma discharge. Vibratsiyi v tekhnitsi ta tekhnolohiyakh, 3 (86), 97–101.
  29. Skіba, M., Pivovarov, A., Makarova, A., Vorobyova, V. (2018). Plasma-chemical Synthesis of Silver Nanoparticles in the Presence of Citrate. Chemistry Journal of Moldova, 13 (1), 7–14. doi: https://doi.org/10.19261/cjm.2018.475
  30. Skіba, М. І., Pivovarov, О. А., Makarova, А. K. Parkhomenko, V. D. (2018). One-pot synthesis of silver nanoparticles using discharged plasma in the presence of polyvinyl alcohol. Voprosy khimii i khimicheskoi tekhnologii, 3, 113–120.
  31. Skiba, M., Pivovarov, A., Makarova, A., Vorobyova, V. (2018). Plasmochemical preparation of silver nanoparticles: thermodynamics and kinetics analysis of the process. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 4–9. doi: https://doi.org/10.15587/1729-4061.2018.127103
  32. Ijaz Hussain, J., Kumar, S., Adil Hashmi, A., Khan, Z. (2011). Silver Nanoparticles: Preparation, Characterization, And Kinetics. Advanced Materials Letters, 2 (3), 188–194. doi: https://doi.org/10.5185/amlett.2011.1206
  33. Marambio-Jones, C., Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12 (5), 1531–1551. doi: https://doi.org/10.1007/s11051-010-9900-y
  34. Francis, S., Joseph, S., Koshy, E. P., Mathew, B. (2017). Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46 (4), 795–804. doi: https://doi.org/10.1080/21691401.2017.1345921
  35. Wunder, S., Polzer, F., Lu, Y., Mei, Y., Ballauff, M. (2010). Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. The Journal of Physical Chemistry C, 114 (19), 8814–8820. doi: https://doi.org/10.1021/jp101125j
  36. Jiménez, M., Juárez, N., Jiménez-Fernández, V. M., Monribot-Villanueva, J. L., Guerrero-Analco, J. A. (2018). Phenolic Compounds And Antioxidant Activity Of Wild Grape (Vitis Tiliifolia). Italian Journal of Food Science, 30 (1), 128–143. doi: https://doi.org/10.14674/IJFS-975
  37. Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3 (3), 135–140. doi: https://doi.org/10.1016/j.arabjc.2010.04.008

Downloads

Published

2018-10-17

How to Cite

Skiba, M., Vorobyova, V., Pivovarov, A., Shakun, A., Gnatko, E., & Trus, I. (2018). “Green” synthesis of nanoparticles of precious metals: antimicrobial and catalytic properties. Eastern-European Journal of Enterprise Technologies, 5(6 (95), 51–58. https://doi.org/10.15587/1729-4061.2018.144602

Issue

Section

Technology organic and inorganic substances