Modeling the behavior of air bubbles in the field of stationary arc discharge

Authors

  • Станіслав Володимирович Петров The Gas Institute of NAS of Ukraine 39 Degtyarivska Str., Kyiv, Ukraine, 03113, Ukraine
  • Сергій Григорович Бондаренко National Technical University of Ukraine “Kyiv Polytechnic Institute” Pobedy Ave., bld. 37 , Kiev, Ukraine, 03056, Ukraine
  • Денис Ігорович Рубець The Gas Institute of NAS of Ukraine 39 Degtyarivska Str., Kyiv, Ukraine, 03113, Ukraine
  • Олександр Валерійович Саванчук National Technical University of Ukraine “Kyiv Polytechnic Institute” Pobedy Ave., bld. 37 , Kiev, Ukraine, 03056, Ukraine
  • Вероніка Андріївна Янюк National Technical University of Ukraine “Kyiv Polytechnic Institute” Pobedy Ave., bld. 37 , Kiev, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14495

Keywords:

Arc discharge, breakdown, plasma, gas bubble, mathematical modeling, heat transfer, mass transfer, algorithm, water, plasma-chemical cleaning

Abstract

The article discusses the processes occurring at the electric arc discharge in the pore (bubble) liquid. The results of modeling of the dynamics of the behavior of a single bubble in the field of the stationary arc discharge were presented. To describe such a discharge a homogeneous model of a short cylinder was used. The model was supplemented by the equations that permit to determine the plasma density and its pressure in the discharge channel. The change of the size of the gas bubble was determined during its breakdown, taking into account the evaporation and condensation of steam and for the account of the radial motion of the bubble. The equations of the critical pressure inside the gas bubble were obtained, and on the basis of the first law of thermodynamics the temperature inside it was determined. The equations of the intensity of heat and mass transfer through the surface of the gas bubble were obtained on the basis of the molecular kinetic theory.

To solve the equations of the mathematical model an algorithm, implemented in the environment Mathcad was developed. The kinetic, dynamic and energetic characteristics of the behavior of the gas bubble in the field of the arc discharge were obtained

Author Biographies

Станіслав Володимирович Петров, The Gas Institute of NAS of Ukraine 39 Degtyarivska Str., Kyiv, Ukraine, 03113

Petrov S.V.

Doctor of Technic Sciences, Leading Research Worker

Plasma Technology Department

Сергій Григорович Бондаренко, National Technical University of Ukraine “Kyiv Polytechnic Institute” Pobedy Ave., bld. 37 , Kiev, Ukraine, 03056

Doctor of Sciences, associate professor

Department of Cybernetic chemical technological process

Денис Ігорович Рубець, The Gas Institute of NAS of Ukraine 39 Degtyarivska Str., Kyiv, Ukraine, 03113

Junior Researcher

Plasma Technology Department

Олександр Валерійович Саванчук, National Technical University of Ukraine “Kyiv Polytechnic Institute” Pobedy Ave., bld. 37 , Kiev, Ukraine, 03056

Master

Department of Cybernetic chemical technological process

Вероніка Андріївна Янюк, National Technical University of Ukraine “Kyiv Polytechnic Institute” Pobedy Ave., bld. 37 , Kiev, Ukraine, 03056

Master

Department of Cybernetic chemical technological process

References

  1. Юткин, Л.А. Электрогидравлический эффект [Текст] / Л.А. Юткин. – М.: Машгиз, 1975. – 356 с.
  2. Коробейников, В.П. Определение формы и параметров фронта ударной волны при взрыве в неоднородной среде [Текст] / В.П. Коробейников, В.П. Карликов // Докл. АН СССР. – 1963. – №6. – С. 1271 – 1274.
  3. Ковальчук, В.В. Внутренняя энергия и давление плазмы в канале электрического разряда [Текст] / В.В. Ковальчук, О.І. Лещенко, О.В. Осипенко // Труды Одесского политехнического университета. – 2008. – Вып. 2(30). – С. 228–234.
  4. Коробейников, С.М. Зажигание разряда в воде с помощью пузырьков [Текст] / С.М. Коробейников, А.В. Мелехов, А.С Бесов // Теплофизика высоких температур. – 2002. – Т. 40, №5. – С. 120-127.
  5. Nigmatulin, R.I. Dynamics, heat and mass transfer of vapor–gas bubbles in liquid [Текст] / R.I. Nigmatulin, N.S. Khabeev, F.B. Nagiev // Int. J. Heat Mass Transfer. – 1981. – Vol.24, №6. – Pр.1033–1041.
  6. Мельников, И.П. Предпробойное развитие электрического разряда в водных электролитах [Текст]: автореф. дис. канд. физ.–мат. наук / И.П. Мельников. – Л., 1969. – 16 с.
  7. On the pressure developed in a liquid during the collapse of a spherical cavity [Текст] // Phil. Mag. – 1917. – Vol.34. – Pр.94–98.
  8. Долинский, А.А. Теоретическое обоснование принципа дискретно–импульсного ввода энергии. І. Модель динамики одиночного парового пузырька [Текст] / А.А. Долинский, Г.К. Иваницкий // Пром. теплотехника. – 1995. – Т.17, №5. – С. 3–28.
  9. Яхно, О.М. Математична модель динаміки росту парової фази (перенесення теплоти у рідині, зміна зовнішнього тиску, вплив теплофізичних параметрів, поля швидкостей і тиску біля бульбашки) [Текст] / О.М Яхно, В.Р. Кулінченко, В.Л. Зав’ялов, Т.Г. Мисюра // Технологія і техніка друкування. Збірник наукових праць НТУУ «КПІ». – 2006. – Вип. №3(13). – С. 49–58.
  10. Долинский, А.А. Теоретическое обоснование принципа дискретно–импульсного ввода энергии. ІІ. Модель динамики ансамбля паровых пузырьков [Текст] / А.А. Долинский, Г.К. Иваницкий // Пром. теплотехника. – 1996. – Т.18, №1. – С. 3–20.
  11. Yutkin, L.A. (1975). Electro–hydraulic effect. Moscow, USSR: Mashgiz, 356.
  12. Korobejnikov, V.P., Karlicov, V.P. (1963). Determination of the shape and parameters of the shock waves in the explosion in an inhomogeneous medium. Reports Academy of Sciences of the USSR, 6, 1271 – 1274.
  13. Kovalchuk, V.V., Leshchenko, O.V., Osipenko, O.V. (2008). The internal energy and pressure of the plasma in the channel of the electric discharge. Proceedings of the Odessa Polytechnic University, 2 (30), 228–234.
  14. Korobejnikov, S.M., Melekhov A.V., Besov A.S. (2002). A discharge in water with bubbles. High Temperature, 40, 5, 120–127.
  15. Nigmatulin, R.I,, Khabeev, N.S., Nagiev, F.B. (1981). Dynamics, heat and mass transfer of vapor–gas bubbles in liquid. Int. J. Heat Mass Transfer, 24, 6, 1033–1041.
  16. Melnikov, I.P. (1969). Prebreakdown development of electrical discharge in aqueous electrolytes. Author. dis. Candidate. Sci. Science Melnikov, I., 16.
  17. On the pressure developed in a liquid during the collapse of a spherical cavity. (1917). Phil. Mag., 34, 94–98.
  18. Dolinsky, A.A., Ivanitskii, G.K. (1995). The theoretical justification of the principle of discrete input pulse energy. I. Model dynamics of a single vapor bubble. Prom. heating engineer, 17, 5, 3–28.
  19. Yahno, O.M., Kulіnchenko, V.R., Zavyalov, V.L., Misura, T.G. (2006). A mathematical model of the growth vapor (heat transfer in the liquid, changing external pressures influence of thermal parameters of the velocity field and the pressure at the bubble). Technology and printing machinery. Proceedings of NTU "KPI", 3(13), 49–58.
  20. Dolinsky, A.A., Ivanitskii, G.K. (1996). The theoretical justification of the principle of discrete input pulse energy. II. Model of the dynamics of the ensemble of vapor bubbles. Prom. heating engineer, 18, 1, 3–20.

Published

2013-06-20

How to Cite

Петров, С. В., Бондаренко, С. Г., Рубець, Д. І., Саванчук, О. В., & Янюк, В. А. (2013). Modeling the behavior of air bubbles in the field of stationary arc discharge. Eastern-European Journal of Enterprise Technologies, 3(5(63), 23–29. https://doi.org/10.15587/1729-4061.2013.14495