Studying the photocatalytic oxidation of hydroxybenzene in aquatic medium on the photocatalizers SnO2, ZnO, TiO2

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.145198

Keywords:

wastewater treatment, hydroxybenzene, photocatalytic activity, titanium dioxide, anatase, rutile

Abstract

This paper reports results of research into photocatalytic activity of oxides SnO2, ZnO, TiO2 in the process of hydroxybenzene degradation in an aqueous medium with the separately considered properties of the allotrope modifications of titanium oxide (IV): anatase and rutile. The relationship has been substantiated between a decrease in the value for the width of the restricted area and an increase in the photocatalytic activity of the examined oxides. The effect has been established of the organization of agitation on an increase in the degree of hydroxybenzene degradation in an aqueous medium, which is 10‒15 % on average. We have studied the influence of ratio of anatase to rutile in a photocatalyst on the hydroxybenzene degradation efficiency. It has been shown that the results obtained in the course of the study are consistent with data from the scientific literature, while opening up additional possibilities to increase the degree of hydroxybenzene oxidation in a joint application of anatase and rutile. It was established that the greatest degree of oxidation with and without agitation at an irradiation time of 60 minutes can be achieved at the content ratio of anatase to rutile of 75/25 % and is 23 % and 37 %, respectively. The use of such a composition makes it possible to increase the degree of hydroxybenzene oxidation in an aqueous medium by 11‒18 %, which is 1.5‒1.9 times larger in comparison with pure rutile and anatase. The results obtained led to the conclusion on that in order to reduce the time required to achieve the maximal indicators for the process of hydroxybenzene degradation, it is necessary to increase the ratio of the irradiated surface to the height of the device and to increase the Re number of the agitation process. Based on the obtained experimental data, we have established the optimum composition of a photocatalyst, which makes it possible to reach the maximal degree of hydroxybenzene recovery from solution

Author Biographies

Dmytro Deineka, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of chemical technology of inorganic substances, catalysis and ecology

Oleksandr Kobziev, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of chemical technology of inorganic substances, catalysis and ecology

Svitlana Avina, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of chemical technology of inorganic substances, catalysis and ecology

Svitlana Grin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of labor and environment protection

Viktoriya Deyneka, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of special chemistry and chemical technology

Dmytro Taraduda, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of organization and technical support of emergency rescue works

Vitaliy Sobina, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Head of Department

Department of organization and technical support of emergency rescue works

References

  1. Guhman, G. A. (2018). Kachestvo okruzhayushchey sredy pri sovremennyh urovnyah nagruzki na nee. Energiya: ekonomika, tekhnika, ekologiya, 6, 44–50.
  2. Osypenko, V. P., Vasylchuk, T. O. (2010). Mihratsya i rozpodil orhanichnykh rechovyn mizh abiotychnymy komponentamy poverkhnevykh vodoim za aerobnykh i anaerobnykh umov seredovyshcha. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu, 259, 188–198.
  3. Ermakov, V. V. (2015). Geohimicheskaya ekologiya i biogeohimicheskie kriterii ocenki ekologicheskogo sostoyaniya taksonov biosfery. Geohimiya, 3, 203–221.
  4. Kirieieva, I. Yu. (2015). The monitoring features of aquatic biodiversity. Science Almanac, 5, 158–165. doi: https://doi.org/10.17117/na.2015.05.158
  5. Alekseenko, K. V., Batalova, V. N. (2015). The study of phenol electrooxidation in alkaline solution on glassy carbon electrode. Vestnik Tomskogo gosudarstvennogo universiteta, 400, 309–314. doi: https://doi.org/10.17223/15617793/400/50
  6. Mokbel', S. M., Kolosov, E. N., Mihalenko, I. I. (2016). Okislenie fenola i hlorfenolov na platinirovannyh titanovyh anodah v kisloy srede. Zhurnal fizicheskoy himii, 90 (16), 960–963. doi: https://doi.org/10.7868/s0044453716060212
  7. Harlamova, T. A., Aliev, Z. M. (2016). Primenenie elektroliza pod davleniem dlya destruktivnogo okisleniya fenola i azokrasiteley. Elektrohimiya, 52 (3), 291–300. doi: https://doi.org/10.7868/s0424857016030063
  8. Maallah, R., Chtaini, A. (2018). Bacterial Electrode for the Oxidation and Detection of Phenol. Pharmaceutica Analytica Acta, 09 (03). doi: https://doi.org/10.4172/2153-2435.1000580
  9. Ratanapongleka, K., Onsarn, A. (2018). Immobilization of Peroxidase from Cauliflower Stem on Ultrafiltration Membrane for Phenol Removal. Applied Mechanics and Materials, 879, 137–143. doi: https://doi.org/10.4028/www.scientific.net/amm.879.137
  10. Wu, Y., Fu, X., Tian, G., Xuehong, G., Liu Z. (2018). Pervaporation of phenol wastewater with PEBA-PU blend membrane. Desalination and water treatment, 102, 101–109. doi: https://doi.org/10.5004/dwt.2018.21861
  11. Ben Moshe, S., Rytwo, G. (2018). Thiamine-based organoclay for phenol removal from water. Applied Clay Science, 155, 50–56. doi: https://doi.org/10.1016/j.clay.2018.01.003
  12. Hu, L., Zhang, J., Li, N., Zhang, S., Chen, F., Ji, B. et. al. (2018). Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes. Journal of Chemical Technology & Biotechnology, 93 (8), 2208–2215. doi: https://doi.org/10.1002/jctb.5562
  13. Bai, X., Yang, L., Hagfeldt, A., Johansson, E. M. J., Jin, P. (2019). D35-TiO2 nano-crystalline film as a high performance visible-light photocatalyst towards the degradation of bis-phenol A. Chemical Engineering Journal, 355, 999–1010. doi: https://doi.org/10.1016/j.cej.2018.08.061
  14. Lebedeva, I. I., Sizeneva, I. P., Kisel'kov, D. M. (2015). Razrabotka vysokoaktivnogo fotokatalizatora na osnove mezoporistogodioksida titana, dopirovannogo oksidom alyuminiya. Vestnik Permskogo nauchnogo centra, 49–53.
  15. Andrade, M. A., Carmona, R. J., Mestre, A. S., Matos, J., Carvalho, A. P., Ania, C. O. (2014). Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon, 76, 183–192. doi: https://doi.org/10.1016/j.carbon.2014.04.066
  16. Akhlaghian, F., Najafi, A. (2018). CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater. Scientia Iranica. doi: https://doi.org/10.24200/sci.2018.20611
  17. Li, H., Ji, J., Cheng, C., Liang, K. (2018). Preparation of phenol-formaldehyde resin-coupled TiO 2 and study of photocatalytic activity during phenol degradation under sunlight. Journal of Physics and Chemistry of Solids, 122, 25–30. doi: https://doi.org/10.1016/j.jpcs.2018.06.012
  18. Skvorcova, L., Chuhlomina, L., Gormakova, N., Kozubec, M. (2013). Ocenka vozmozhnosti ochistki vody ot fenol'nyh soedineniy v usloviyah kataliticheskogo ozonirovaniya i UF izlucheniya s primeneniem kompoziciy B-N-Fe i Si-N-Fe. Vestnik Tomskogo gosudarstvennogo universiteta, 370, 190–193.
  19. Hella, K., Bahari, K., Sadi, F. (2014). Kataliticheskie svoystva mezoporistoy sistemy Fe-HMS v okislenii fenola. Kinetika i kataliz, 55 (4), 490–497. doi: https://doi.org/10.7868/s0453881114040091
  20. Hryukin, M. B. (2017). Princip vybora osnovnyh razmerov peremeshivayushchih apparatov. Academy, 5, 46–49.
  21. Chudakov, G. M., Ivanov, M. G. (2015). Razrabotka fil'truyushchih centrifug. Nauchnye trudy KubGTU, 5.
  22. Zolotov, Yu. A. (2016). K voprosu o metodologii sozdaniya metodov kolichestvennogo himicheskogo analiza. Zhurnal analiticheskoy himii, 71 (10), 1061–1062. doi: https://doi.org/10.7868/s0044450216100145
  23. Blinova, N. N., Aubakirova, R. A., Troeglazova, A. V. (2015). Metod bromatometricheskogo titrovaniya dlya analiza atmosfernogo vozduha na soderzhanie fenola. Aktual'nye problemy gumanitarnyh i estestvennyh nauk, 7, 20–28.
  24. Cherkasova, C. O., Shapovalov, V. V., Dmitrenko, I. P., Budnik, A. P. (2017). Vliyanie fazovogo sostava dioksida titana na fotokataliticheskuyu degradaciyu organicheskih krasiteley. Inzhenerniy vestnik Dona, 2.
  25. Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., Fennell, J. A. (1998). Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air. Environmental Science Technology, 32 (17), 2650–2653. doi: https://doi.org/10.1021/es980036f
  26. Zhao, W., Chen, C., Li, X., Zhao, J., Hidaka, H., Serpone, N. (2002). Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst. The Journal of Physical Chemistry B, 106 (19), 5022–5028. doi: https://doi.org/10.1021/jp020205p
  27. Mahapatra, S., Nayak, S. K., Madras, G., Guru Row, T. N. (2008). Microwave Synthesis and Photocatalytic Activity of Nano Lanthanide (Ce, Pr, and Nd) Orthovanadates. Industrial & Engineering Chemistry Research, 47 (17), 6509–6516. doi: https://doi.org/10.1021/ie8003094

Downloads

Published

2018-10-22

How to Cite

Deineka, D., Kobziev, O., Avina, S., Grin, S., Deyneka, V., Taraduda, D., & Sobina, V. (2018). Studying the photocatalytic oxidation of hydroxybenzene in aquatic medium on the photocatalizers SnO2, ZnO, TiO2. Eastern-European Journal of Enterprise Technologies, 5(6 (95), 59–67. https://doi.org/10.15587/1729-4061.2018.145198

Issue

Section

Technology organic and inorganic substances