A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732

DOI:

https://doi.org/10.15587/1729-4061.2018.145223

Keywords:

electrochromism, intercalation, Ni(OH)2, nickel hydroxide, tungstate, , polyvinyl alcohol

Abstract

Thin films of nickel hydroxide were prepared using the cathodic template method and were tested in different electrolytes. The electrolytes were 0.1 M KOH and 0.1 M KOH with the addition of 0.1, 0.3 and 1 mM K2WO4. The test revealed, that the presence of tungstate can have a significant effect on electrochemical and electrochromic characteristics of Ni(OH)2 films. The initial sample, cycled in 0.1 M KOH showed different characteristics from those cycled in tungstate-containing electrolytes: significant difference between current densities of cathodic and anodic peaks and presence of the current plateau on the cyclic voltamperometry curve. However, the initial sample demonstrated the highest coloration degree of 74 %. On the other hand, the sample showed degradation of the coloration degree past initial growth.

The samples cycled in the tungstate-containing electrolyte showed better electrochemical characteristics – sharper cathodic and anodic peaks, with the lesser difference between peak values. The dynamics of the absolute coloration degree of the samples cycled in tungstate-containing electrolyte showed a constant increase. The sample tested in a solution with 1 mM tungstate had the lowest value of the absolute coloration degree – 60 %. For tungstate concentrations of 0.1 and 0.3 mM, the absolution coloration degree at the last cycle was 72 and 71 % respectively.

The samples tested in a solution with tungstate additive had a significantly lower bleaching time – 40–50 s in comparison to 360 s of the sample cycled in 0.1 М KOH.

A possible mechanism that explains such differences in behavior was proposed

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Smart Windows: Energy Efficiency with a View. Available at: https://www.nrel.gov/news/features/2010/1555.html
  2. Risteska Stojkoska, B. L., Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464. doi: https://doi.org/10.1016/j.jclepro.2016.10.006
  3. Silverio-Fernández, M., Renukappa, S., Suresh, S. (2018). What is a smart device? – a conceptualisation within the paradigm of the internet of things. Visualization in Engineering, 6 (1). doi: https://doi.org/10.1186/s40327-018-0063-8
  4. Sibilio, S., Rosato, A., Scorpio, M., Iuliano, G., Ciampi, G., Vanoli, G., de Rossi, F. (2016). A Review of Electrochromic Windows for Residential Applications. International Journal of Heat and Technology, 34, S481–S488. doi: https://doi.org/10.18280/ijht.34s241
  5. Alesanco, Y., Viñuales, A., Rodriguez, J., Tena-Zaera, R. (2018). All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials, 11 (3), 414. doi: https://doi.org/10.3390/ma11030414
  6. He, Z., Yuan, X., Zhao, Y., Zou, C., Guo, S., He, B. et. al. (2016). A greener electrochromic liquid crystal based on ionic liquid electrolytes. Liquid Crystals, 43 (8), 1110–1119. doi: https://doi.org/10.1080/02678292.2016.1160296
  7. Cupelli, D., De Filpo, G., Chidichimo, G., Nicoletta, F. P. (2006). The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions. Journal of Applied Physics, 100 (2), 024515. doi: https://doi.org/10.1063/1.2219696
  8. Vergaz, R., Pena, J., Barrios, D., Pérez, I., Torres, J. (2007). Electrooptical behaviour and control of a suspended particle device. Opto-Electronics Review, 15 (3), 154–158. doi: https://doi.org/10.2478/s11772-007-0013-9
  9. Ghosh, A., Norton, B., Duffy, A. (2016). First outdoor characterisation of a PV powered suspended particle device switchable glazing. Solar Energy Materials and Solar Cells, 157, 1–9. doi: https://doi.org/10.1016/j.solmat.2016.05.013
  10. Browne, M. P. (2016). Electrochromic Nickel Oxide Films for Smart Window Applications. International Journal of Electrochemical Science, 6636–6647. doi: https://doi.org/10.20964/2016.08.38
  11. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
  12. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  13. Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712jss
  14. Young, K.-H., Wang, L., Yan, S., Liao, X., Meng, T., Shen, H., Mays, W. (2017). Fabrications of High-Capacity Alpha-Ni(OH)2. Batteries, 3 (4), 6. doi: https://doi.org/10.3390/batteries3010006
  15. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  16. Yuan, B., Zheng, X., Zhang, C., Lu, W., Li, B., Yang, Q.-H. (2014). Assembly of Ni(OH)2-graphene hybrids with a high electrochemical performance by a one-pot hydrothermal method. New Carbon Materials, 29 (6), 426–431. doi: https://doi.org/10.1016/s1872-5805(14)60147-5
  17. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  18. Xi, W., Yan, G., Tan, H., Xiao, L., Cheng, S., Khan, S. U. et. al. (2018). Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. Dalton Transactions, 47 (26), 8787–8793. doi: https://doi.org/10.1039/c8dt00765a
  19. Huang, W., Wang, H., Zhou, J., Wang, J., Duchesne, P. N., Muir, D. et. al. (2015). Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 6 (1). doi: https://doi.org/10.1038/ncomms10035
  20. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
  21. Jittiarporn, P., Badilescu, S., Al Sawafta, M. N., Sikong, L., Truong, V.-V. (2017). Electrochromic properties of sol–gel prepared hybrid transition metal oxides – A short review. Journal of Science: Advanced Materials and Devices, 2 (3), 286–300. doi: https://doi.org/10.1016/j.jsamd.2017.08.005
  22. Neiva, E. G. C., Oliveira, M. M., Bergamini, M. F., Marcolino, L. H., Zarbin, A. J. G. (2016). One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep33806
  23. Lin, F., Montano, M., Tian, C., Ji, Y., Nordlund, D., Weng, T.-C. et. al. (2014). Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium. Solar Energy Materials and Solar Cells, 126, 206–212. doi: https://doi.org/10.1016/j.solmat.2013.11.023
  24. Cai, G., Eh, A. L.-S., Ji, L., Lee, P. S. (2017). Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 1 (12), 1700074. doi: https://doi.org/10.1002/adsu.201700074
  25. Ma, D., Wang, J. (2016). Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China Chemistry, 60 (1), 54–62. doi: https://doi.org/10.1007/s11426-016-0307-x
  26. Martin, J., Jack, M., Hakimian, A., Vaillancourt, N., Villemure, G. (2016). Electrodeposition of Ni-Al layered double hydroxide thin films having an inversed opal structure: Application as electrochromic coatings. Journal of Electroanalytical Chemistry, 780, 217–224. doi: https://doi.org/10.1016/j.jelechem.2016.09.022
  27. Shi, J., Lai, L., Zhang, P., Li, H., Qin, Y., Gao, Y. et. al. (2016). Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route. Journal of Solid State Chemistry, 241, 1–8. doi: https://doi.org/10.1016/j.jssc.2016.05.032
  28. Mondal, D., Villemure, G. (2012). Improved reversibility of color changes in electrochromic Ni–Al layered double hydroxide films in presence of electroactive anions. Journal of Electroanalytical Chemistry, 687, 58–63. doi: https://doi.org/10.1016/j.jelechem.2012.09.046
  29. Mondal, D., Villemure, G. (2009). Effect of the presence of on the electrochromic responses of films of a redox active Ni–Al-layered double hydroxide. Journal of Electroanalytical Chemistry, 628 (1-2), 67–72. doi: https://doi.org/10.1016/j.jelechem.2009.01.007
  30. Mondal, D., Jack, M., Villemure, G. (2014). Improved contrast between the coloured and transparent states in electrochromic Ni–Al layered double hydroxide films in mixtures of electroactive ions. Journal of Electroanalytical Chemistry, 722-723, 7–14. doi: https://doi.org/10.1016/j.jelechem.2014.02.025
  31. Kotok, V. A., Malahova, E. V., Kovalenko, V. L., Baramzin, M. N., Kovalenko, P. V.; Barsukov, V. Z., Borysenko, Yu. V., Buket, O. I., Khomenko, V. G. (Eds.) (2016). Smart windows: cation internal and anion external activation for electrochromic films of nickel hydroxide. Promising materials and processes in technical electrochemistry. Kyiv: KNUTD, 224–228.
  32. Kotok, V., Kovalenko, V. (2018). Investigation of the electrochromic properties of Ni(OH)2 films on glass with ITO­Ni bilayer coating. Eastern-European Journal of Enterprise Technologies, 3 (5 (93)), 55–61. doi: https://doi.org/10.15587/1729-4061.2018.133387
  33. Carpani, I. (2004). Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite. Solid State Ionics, 168 (1-2), 167–175. doi: https://doi.org/10.1016/j.ssi.2004.01.032
  34. Jayashree, R. S., Vishnu Kamath, P. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
  35. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
  36. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  37. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
  38. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  39. Li, S., Zhu, K., Liu, J., Zhao, D., Cui, X. (2018). Porous LiMn2O4 Microspheres With Different Pore Size: Preparation and Application as Cathode Materials for Lithium Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 16 (1), 011006. doi: https://doi.org/10.1115/1.4040567
  40. Lu, Y., Pang, M., Shi, S., Ye, Q., Tian, Z., Wang, T. (2018). Enhanced Electrochemical Properties of Zr4+-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-ion Battery at Elevated Temperature. Scientific Reports, 8 (1). doi: https://doi.org/10.1038/s41598-018-21345-6
  41. Lee, J. W., Ko, J. M., Kim, J.-D. (2011). Hierarchical Microspheres Based on α-Ni(OH)2 Nanosheets Intercalated with Different Anions: Synthesis, Anion Exchange, and Effect of Intercalated Anions on Electrochemical Capacitance. The Journal of Physical Chemistry C, 115 (39), 19445–19454. doi: https://doi.org/10.1021/jp206379h
  42. Crepaldi, E. L., Pavan, P. C., Valim, J. B. (1999). A new method of intercalation by anion exchange in layered double hydroxides. Chemical Communications, 2, 155–156. doi: https://doi.org/10.1039/a808567f
  43. Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406
  44. Gunjakar, J. L., Inamdar, A. I., Hou, B., Cha, S., Pawar, S. M., Abu Talha, A. A. et. al. (2018). Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale, 10 (19), 8953–8961. doi: https://doi.org/10.1039/c7nr09626g

Downloads

Published

2018-10-22

How to Cite

Kotok, V., & Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5(12 (95), 18–24. https://doi.org/10.15587/1729-4061.2018.145223

Issue

Section

Materials Science