Construction of a mathematical model of extraction process in the system "solid body ‒ liquid" in a microwave field
DOI:
https://doi.org/10.15587/1729-4061.2018.145232Keywords:
extraction, microwave field, heat and mass exchange, material balance, differential equationsAbstract
We have analyzed the extraction process in the technology of oilseed processing. This paper describes the original provisions, specificity, modern scientific schools, and the level of representation of the classic extraction process. The specificity of mathematical modeling of the extraction process, given the introduction of an additional driving force that significantly affects the kinetics of extraction in an electromagnetic field of ultra-high frequency, is considered from the classical theory of the process.
We have constructed the extraction kinetics calculation formulae, in microwave field, which develop the theory of extraction kinetics in an electromagnetic field. The paper gives an analysis of variants for the representation of a mathematical notation of the extraction process of disperse materials in an electromagnetic field of ultra-high frequency. A complete model of the mass exchange processes during extraction in a microwave field in the differential form will make it possible to generate conditions for conducting comprehensive experimental studies, which would fully define the extraction process of oilseeds.
We have theoretically substantiated the process of heat and mass exchange between the all defining objects inside an extraction unit with an electromagnetic field of ultra-high frequency. Based on material balances, we derived equations describing the basic dynamic characteristics of oil extraction mode in an extraction unit. Since the precise analytical solution to the presented mathematical model in the form of a system of differential equations in particular derivatives does not exist, the approximate solution has been proposed. It makes it possible to identify the distribution of an extractant depending on the size of fractions of raw materials, the existence and magnitude of power of the pulsed electromagnetic field of ultra-high frequency, the extractant's hydro-module, temperature, solvents, for any point in time.
Based on the experimental research into extraction of oilseed material, it was established that under the action of microwave radiation a value for the mass release coefficient during extraction of oilseed raw materials grows by an order of magnitude (β=1·10-5) compared to extraction without the effect of MW field (β=1·10-6). Oil extraction under the action of a microwave field increases to 30 %, while electricity consumption decreases by 93‒97 %. The application of a microwave field would not only improve production efficiency, but reduce energy costs during process by an order of magnitudeReferences
- Romankov, P. G., Frolov, V. F. (1990). Teploobmennye processy himicheskoy tekhnologii. Leningrad: Himiya, 384.
- Aksel'rud, G. A., Lysyanskiy, V. M. (1974). Ekstragirovanie (sistema tverdoe telo – zhidkost'). Leningrad: Himiya, 256.
- Beloborodov, V. V. (1999). Ekstragirovanie iz tverdyh materialov v elektromagnitnom pole sverhvysokih chastot. Inzhenerno-fizicheskiy zhurnal, 72 (1), 141–146.
- Burdo, O. G. (2013). Pishchevye nanoenergotekhnologii. Herson: Izd. Grin' D.S., 304.
- Burdo, O. G. (2007). Ekstragirovanie v sisteme «kofe – voda». Odessa: «TES», 176.
- Toda, T. A., Sawada, M. M., Rodrigues, C. E. C. (2016). Kinetics of soybean oil extraction using ethanol as solvent: Experimental data and modeling. Food and Bioproducts Processing, 98, 1–10. doi: https://doi.org/10.1016/j.fbp.2015.12.003
- So, G. C., Macdonald, D. G. (1986). Kinetics of oil extraction from canola (rapeseed). The Canadian Journal of Chemical Engineering, 64 (1), 80–86. doi: https://doi.org/10.1002/cjce.5450640112
- Perez, E. E., Carelli, A. A., Crapiste, G. H. (2011). Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of Food Engineering, 105 (1), 180–185. doi: https://doi.org/10.1016/j.jfoodeng.2011.02.025
- Rakotondramasy-Rabesiaka, L., Havet, J.-L., Porte, C., Fauduet, H. (2010). Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Separation and Purification Technology, 76 (2), 126–131. doi: https://doi.org/10.1016/j.seppur.2010.09.030
- Seikova, I., Simeonov, E., Ivanova, E. (2004). Protein leaching from tomato seed–experimental kinetics and prediction of effective diffusivity. Journal of Food Engineering, 61 (2), 165–171. doi: https://doi.org/10.1016/s0260-8774(03)00083-9
- Chan, C.-H., Yusoff, R., Ngoh, G.-C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92 (6), 1169–1186. doi: https://doi.org/10.1016/j.cherd.2013.10.001
- Rogov, I. A., Nekrutman, C. B. (1986). Sverhchastotnyy nagrev pishchevyh produktov. Moscow: Agropromizdat, 350.
- Burdo, O., Bandura, V., Kolianovska, L., Dukulis, I. (2017). Experimental research of oil extraction from canola by using microwave technology. Engineering for rural development, 296–302. doi: https://doi.org/10.22616/erdev2017.16.n056
- Burdo, O., Bandura, V., Zykov, A., Zozulyak, I., Levtrinskaya, J., Marenchenko, E. (2017). Development of wave technologies to intensify heat and mass transfer processes. Eastern-European Journal of Enterprise Technologies, 4 (11 (88)), 34–42. doi: https://doi.org/10.15587/1729-4061.2017.108843
- Burdo, O. G. (2005). Nanomasshtabnye effekty v pishchevyh tekhnologiyah. Inzhenerno-fizicheskiy zhurnal, 78 (1), 88–93.
- Bandura, V. M., Kolyanovs'ka, L. M. (2013). Obrobka eksperimental'nih danih procesu ekstraguvannya roslinnih olіy mіkrohvil'ovim polem. Zbirnyk naukovykh prats Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy, 43 (2), 66–69.
- Lykov, A. V. (1967). Teoriya teploprovodnosti. Moscow: Vysshaya shkola, 590.
- Lykov, A. V. (1971). Teplomassoobmen: spravochnik. Moscow: Energiya, 560.
- Romanovskiy, S. G. (1969). Processy termicheskoy obrabotki i sushki v elektromagnitnyh ustanovkah. Minsk: Nauka i tekhnika, 348.
- Rogov, I. A., Nekrutman, C. B., Lysov, G. V. (1981). Tekhnika sverhvysokochastotnogo nagreva pishchevyh produktov. Moscow: Leg. i pishch. prom-t', 199.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Boris Kotov, Valentina Bandura
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.