Modeling of effect of topological structure on characteristics of spike neural network

Authors

  • Анатолій Антонович Шиян Vinnitsa National Technical University Khmelnitskoe shosse 95, Vinnitsa, 21021, Ukraine, Ukraine
  • Вікторія Сергіївна Іваненко Vinnitsa National Technical University Khmelnitskoe shosse 95, Vinnitsa, 21021, Ukraine, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14675

Keywords:

Spike, neural network, topology, way, data processing, distribution, receptor motoneuron

Abstract

Despite the active study of the spike neural networks, little attention has been paid to the effect of the topological organization of such networks on the efficiency of information transformation. This article proposed an approach to modeling the effects of the neural network topology on the behavior of a spike neuron, which makes it possible to evaluate the effectiveness of information transformation. To do this, the notion of a set of ways of distribution of spike signal through the neural network was introduced. The models are constructed to describe the effect of the neural network topology on a detached neuron for the two cases. It was shown that the spike neural network has both minimum and maximum sizes, which depend on the characteristics of the network, as well as on the specificity of the operation of the spike neuron. The results provide new ways for explaining the functioning of the natural neural networks and for building the effective artificial neural networks (e.g. for pattern recognition, or for managing technical objects)

Author Biographies

Анатолій Антонович Шиян, Vinnitsa National Technical University Khmelnitskoe shosse 95, Vinnitsa, 21021, Ukraine

Associate Professor

Department of Computer Science

Вікторія Сергіївна Іваненко, Vinnitsa National Technical University Khmelnitskoe shosse 95, Vinnitsa, 21021, Ukraine

Student

Department of Metrology and Industrial Automatics

References

  1. Осипов Г. В. Синхронизация при обработке и передаче информации в нейронных сетях [Текст] / Г. В. Осипов. – Нижний Новгород : ННГУ, 2007. – 99 с.
  2. Брюхомицкий Ю. А. Нейросетевые модели для систем информационной безопасности [Текст] / Ю. А. Брюхомицкий. – Таганрог: Изд-во ТРТУ, 2005. – 160 с.
  3. Pavlov A. N. Wavelet analysis in neurodynamics [Текст] / A. N. Pavlov, A. A. Koronovskii, A. A. Ovchinnikov et al. // Uspekhi Fizicheskikh Nauk. – 2012. Vol. 182, No 9. – Р. 905-939.
  4. Tapson J. Synthesis of neural networks for spatio-temporal spike pattern recognition and processing [Текст] / J. Tapson, G. Cohen, S. Afshar et al. – Доступно за адресою: http://arxiv.org/abs/1304.7118. 26 квітня 2013. – 21 р.
  5. Sinyavskiy O. Y. Reinforcement learning of a spiking neural network in the task of control of an agent in a virtual discrete environment [Текст] / O. Y. Sinyavskiy, A. I. Kobrin // Rus. J. Nonlin. Dyn. – 2011. – Vol. 7, No. 4 (Mobile Robots). – Р. 859–875.
  6. Sinyavskiy O. Y. Generalized stochastic spiking neuron model and extended Spike Response Model in spatial-temporal impulse pattern detection task [Текст] / O. Y. Sinyavskiy, A. I. Kobrin // Optical Memory & Neural Networks (Information Optics). – 2010. – Vol. 19, No 4. – P. 300-309.
  7. Medvedev G. S. The geometry of spontaneous spiking in neuronal networks [Текст] / G. S. Medvedev, S. Zhuravytska // Journal of Nonlinear Science. – 2012. – Vol. 22, Issue 5. – Р. 689-725.
  8. Huang, G. B. Extreme learning machine: Theory and applications [Текст] / G. B. Huang, Q. Y. Zhu, C. K. Siew. // Neurocomputing. – 2006. – Vol. 70. – Р. 489–501.
  9. Дубровин Б. А. Современная геометрия [Текст] / Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко. – М.: Наука, 1979. – 760 с.
  10. Nicholls J. G. From Neuron to Brain [Текст] / J. G. Nicholls, A. R. Martin, B. G. Wallace, P. A. Fuchs. – Sunderland : Sinauer Associates, Inc., 2001. – 672 p.
  11. Osipov, H. V. (2007). Sinkhronozatsia pri obrabotke i peredache informatsii v neirinnikh setiakh. Nizhnii Novhorod : NNHU.
  12. Briukhomitskii, Yu. A. (2005). Neirosetevie mideli dlia system informatsionnoi bezopasnosti. Tahanroh: TRTU.
  13. Pavlov, A. N., Koronovskii, A. A., Ovchinnikov, A. A., et al. (2012). Wavelet analysis in neurodynamics. Uspekhi Fizicheskikh Nauk, 182(9), 905-939.
  14. Tapson, J., Cohen, G., Afshar, S., et al. (2013). Synthesis of neural networks for spatio-temporal spike pattern recognition and processing. – Available at SRRN: http://arxiv.org/abs/1304.7118 .
  15. Sinyavskiy, O. Y., & Kobrin, A. I. (2011). Reinforcement learning of a spiking neural network in the task of control of an agent in a virtual discrete environment. Rus. J. Nonlin. Dyn., Vol. 7(4) (Mobile Robots), 859–875.
  16. Sinyavskiy, O. Y., & Kobrin, A. I. (2010). Generalized stochastic spiking neuron model and extended Spike Response Model in spatial-temporal impulse pattern detection task. Optical Memory & Neural Networks (Information Optics), Vol. 19(4), 300-309.
  17. Medvedev, G. S., & Zhuravytska, S. (2012). The geometry of spontaneous spiking in neuronal networks. Journal of Nonlinear Science, Vol. 22(4), 689-725.
  18. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, Vol.70, 489–501
  19. Dubrovin, B. A., Novikov, S. P., & Fomenko A. T. (1979). Sovremennaia geometria. Moscow, USSR : Nauka.
  20. Nicholls, J. G., Martin, A. R., Wallace, B. G., & Fuchs, P. A. (2001). From Neuron to Brain. – Sunderland : Sinauer Associates, Inc.

Published

2013-06-20

How to Cite

Шиян, А. А., & Іваненко, В. С. (2013). Modeling of effect of topological structure on characteristics of spike neural network. Eastern-European Journal of Enterprise Technologies, 3(3(63), 19–21. https://doi.org/10.15587/1729-4061.2013.14675

Issue

Section

Control systems