Distribution of unbranched flows with self-similarity effect

Authors

  • Дмитрий Владимирович Агеев Kharkiv National University of Radio Electronics Lenina 16, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14767

Keywords:

flow, distribution, effect of self-similarity, Hurst parameter, deflection of the flow, network, delay

Abstract

An important stage in the design and operation of telecommunication systems is the choice of routes and finding of the intensity of flows along these routes. This problem is known as the problem of the distribution of flows. The existing methods of solution are based on simple flow models, which lost their adequacy for the modern multiservice traffic. The studies have shown that the models of self-similar processes describe more precisely the properties of the traffic. Despite the large number of publications on the self-similar traffic study there is a significant lack of works on the application of these models in the synthesis of telecommunications systems. The article suggests a modification of the previously known method of deflection of unbranched flows taking into account the effect of self-similarity. As a result, in the basic method of calculation we have changed a number of expressions that provide the finding of the parameters of aggregated flows and the average delay in the network. The proposed method can be used when designing large balanced telecommunication systems, where a flow has little influence on the quality parameters of service of the whole network. 

Author Biography

Дмитрий Владимирович Агеев, Kharkiv National University of Radio Electronics Lenina 16, Kharkov, Ukraine, 61166

Professor

Department of telecommunication systems

References

  1. On the Self-Similar Nature of Ethernet Traffic (Extended Version) [Текст] / W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson // IEEE/ACM Trans, on Net-working. — 1994. — Vol. 2, Issue 1. — P. 1—15.
  2. Paxson V. Wide-Area Traffic: The Failure of Poisson Modeling [Текст] / V. Paxson, S. Floyd // Proc. ACM Sigcomm, London, UK. — 1994. — С. 257—268.
  3. Симонина О.А. Характеристики трафика в сетях IP [Текст] / О.А. Симо-нина, Г.Г. Яновский // Труды учебных заведений связи. — 2004. — № 177. — С. 8—14.
  4. Norros I. A Storage Model with Self-Similar Input [Текст] / I. Norros // Queueing Systems. — 1994. — Vol. 16, No 3-4. — P. 387—396.
  5. Norros I. On the use of fractional Brownian motion in the theory of connec-tionless networks [Текст] / I. Norros // Selected Areas in Communications, IEEE Journal. — 1995. — Vol. 13, Issue 6. — P. 953—962.
  6. Шубин Е.В. Метод синтеза топологической структуры сети передачи данных по критерию минимальной стоимости с использованием генетического алгоритма: диссер-тация на соискание ученой степени кандидата технических наук: 05.12.02. — Х.: 2005. — 172 с.
  7. Taqqu M.S. Proof of a Fundamental Result in Self-Similar Traffic Modeling [Текст] / M.S. Taqqu, W. Willinger, R. Sherman // SIGCOMM Comput. Commun. Rev. — 1997. — Vol. 27, Issue 2. — P. 5—23.
  8. Агеев Д.В. Выбор пропускных способностей каналов связи при самопо-добной характере передаваемых потоков [Текст] / Д.В. Агеев, Самир Махмуд, А.В. Чернятьев // Радиотехника: Всеукр. межвед. науч.-техн. сб. - 2007. - № 148. - C. 87 –95.
  9. Агеев Д.В. Методика определения параметров потоков на разных участ-ках мультисервисной телекоммуникационной сети с учетом эффекта самоподо-бия [Текст] / Д.В. Агеев, А.А. Игнатенко, А.Н. Копылев // Проблеми телекомунікацій. – 2011. – № 3 (5). – С. 18 – 37.
  10. Зайченко Ю.П. Структурная оптимизация сетей ЭВМ [Текст] / Ю.П. Зайченко, Ю.В. Гонта. - К.: Техника, 1986. - 168 с.
  11. Leland W.E., Taqqu M.S., Willinger W., Wilson D.V. (1994). On the Self-Similar Nature of Ethernet Traffic (Extended Version) IEEE/ACM Trans, on Net-working, Vol. 2, Issue 1, 1—15.
  12. Paxson V., Floyd S. (1994). Wide-Area Traffic: The Failure of Poisson Mod-eling. Proc. ACM Sigcomm, London, UK, 257—268.
  13. Simonina О., Yanovskiy G. (2004). Kharakteristiki trafika v setyakh IP [Characteristics of traffic in IP networks]. Trudy uchebnykh zavedeniy svyazi, 177, 8—14.
  14. Norros I. (1994). A Storage Model with Self-Similar Input. Queueing Systems, Vol. 16, No 3-4, 387—396.
  15. Shubin Ye. (2005). PhD Thesis, Kharkov.
  16. Taqqu M.S. Proof of a Fundamental Result in Self-Similar Traffic Modeling / M.S. Taqqu, W. Willinger, R. Sherman // SIGCOMM Comput. Commun. Rev. — 1997. — Vol. 27, Issue 2. — P. 5—23.
  17. Ageytv D., Ignatenko A., Kopyliov A. (2011). Metodika opredeleniya pa-rametrov potokov na raznykh uchastkakh mul'tiservisnoy telekommunikatsionnoy seti s uchetom effekta samopodobiya [Method for determination of flow parameters in different parts of multiservice telecommunications network, taking into account the effect of self-similarity] Problemi telekomunìkacìj, 3 (5), 18 – 37.
  18. Zaychenko U. Gonta U. (1986). Strukturnaya optimizatsiya setey EVM [Structural optimization of computer networks], Kiev. USSR: Tekhnika.

Published

2013-06-19

How to Cite

Агеев, Д. В. (2013). Distribution of unbranched flows with self-similarity effect. Eastern-European Journal of Enterprise Technologies, 3(4(63), 60–63. https://doi.org/10.15587/1729-4061.2013.14767

Issue

Section

Mathematics and Cybernetics - applied aspects