Studying the efficiency of soil decontamination when using a device with the biosorbent “econadin

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.147684

Keywords:

oil pollution, device with a biosorbent, control over process of soil decontamination, diffusion, biosorbent

Abstract

We have investigated the efficiency of soil decontamination from petroleum products using the patented perforated device of cylindrical shape with a diameter of 0.04 m, with an area of openings of 0.04 m2, with the biosorbent “Econadin”. the process of soil decontamination lasted over a period of 35 days. Petrol of grade A92 was used as a model pollutant.

The present study was conducted in order to improve the process of purification from petroleum products by transporting the biosorbent into deep layers of soil. The result of the study is the established dependence of the concentration of a pollutant (C) in soil on a distance (R) to the device: Ñ=–0.00009134R2–0.001017858R+0.07274845. The dependence, established to control the process of purification, makes it possible to compile methodological recommendations on the use of the proposed device. Based on the Malthus model, combined with a diffusion process, we acquired the data that explain the mechanism of neutralization of gasoline with bacteria located in the examined device. Under the assigned conditions, purification is enabled through the migration of bacteria into soil with a diffusion coefficient D=0.08801 cm2/day and a constant of the natural population growth rate r=0.165168.

The obtained results are useful and important to control the process of purification and to devise methodical recommendations on the use of the proposed design. A given approach makes it possible to calculate the neutralization of gasoline at a change in the boundary conditions, for example, a radius of the cylinder of a specialized device with a biosorbent, the limit of distance form it, and the duration of effective utilization of the device. For other soils and pollutants, a combined method has been proposed, including the Malthus method, based on the description of a diffusion process; it could also be applied upon determining the parameters r, D and C0 experimentally

Author Biographies

Yulia Shatokhina, Educational-Scientific Institute of Menagment and Administration Chernihiv National University of Technology Shevchenka str., 95, Chernihiv, Ukraine, 14027

PhD, Associate Professor

Department of Public Administration and Organizations’ Management

Leonid Klintsov, Chernihiv Institute of Business and Law Honcha str., 37, Chernihiv, Ukraine, 14000

PhD, Associate Professor

Department of сomputer Science

References

  1. Siemaka, O. M. (2013). Do pytannia doslidzhennia mihratsiyi sumishi naftoproduktiv pislia tekhnohennoi avariyi v m. Chernihiv [Research issue of migration oil after technological disaster in the city of Chernigov]. Visnyk Natsionalnoho universytetu vodnoho hospodarstva ta pryrodokorystuvannia, 4 (64), 143–149.
  2. Kotelchuk, A. L., Siemaka, O. M., Ivanova, I. M. (2016). Pat. No. 111261 UA. Prystriy dlia ochyshchennia hlybynnykh shariv hruntu vid naftoproduktiv [Device for cleaning of deep soil layers from oil]. No. u201603474; declareted: 04.04.2016; published: 10.11.2016, Bul. No 21.
  3. Сhatokhina, J. (2017). Operational control over the process of wastewater treatment. International research and practice conference «Modern methods, innovations and experience of practical application in the field of technical sciences»: Conference proceedings. Radom, Radom Academy of Economics, Republic of Poland: Izdevnieciba «Baltija Publishing», 223–226.
  4. Ivanova, I. M., Shatokhina, Yu. V., Sapura, O. V., Tychyna, D. O. (2015). Influence of wastewater containing hexamethylenediamine on the livelihoods of hydrocoles of activated sludge. Eastern-European Journal of Enterprise Technologies, 5 (10 (77)), 21–26. doi: https://doi.org/10.15587/1729-4061.2015.48881
  5. Baliuk, S. A., Fateev, A. I., Samokhvalova, V. L., Panasenko, Ye. V., Levin, A. Y. (2018). Proceedings of the Global Symposium on Soil Pollution. Technogenically contaminated soils of Ukraine. Rome, 219–227. Available at: https://www.slideshare.net/ExternalEvents/technogenically-contaminated-soils-of-ukraine
  6. Filatov, K. D., Konup, I. P., Hudzenko, T. V., Kryvytska, T. M., Soloviov, V. I., Baranov, O. O. et. al. (2010). Pat. No. 95859 UA. Biopreparat dlia sorbtsiyi i destruktsiyi vuhlevodniv i sposib ochyshchennia vody ta/abo gruntu vid zabrudnen naftoiu ta naftoproduktamy [Biological product for sorption and degradation of hydrocarbons and method of cleaning water and / or soil pollution by oil and oil products]. No. a201004765; declareted: 21.04.2010; published: 12.09.2011, Bul. No. 17.
  7. Soloviov, V. I. (2003). Pat. No. 2270 UA. Sorbent dlia usunennia vuhlevodniv nafty [Sorbent to remove petroleum hydrocarbons]. No. a2003054123; declareted: 06.06.2003; published: 15.01.2004, Bul. No. 1.
  8. Siemaka, O. M., Ivanova, I. M., Dziuba, V. A. (2012). Doslidzhennia mihratsiyi naftoproduktiv pislia tekhnohennoi avariyi v m. Chernihiv [Investigation of mineral oil migration after a technological disaster in the city of Chernihiv]. Ekolohichna bezpeka ta pryrodokorystuvannia, 11, 108–116.
  9. Fedoseeva, E. N. Zorin, A. D., Zanozina, V. F., Samsonova, L. E. (2014). Migratciya nefteproduktov iz zagriaznennoi pochvy v nasypnoi izoliruiushchiy sloi chistogo peska [Migration of oil products from contaminated soil to the bulk insulating layer of clean sand]. Khimiya v interesakh ustoichivogo razvitiya, 5, 497–503.
  10. Zabbey, N., Sam, K., Onyebuchi, A. T. (2017). Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges, 586, 952–965. doi: https://doi.org/10.1016/j.scitotenv.2017.02.075
  11. Murphy, D., Gemmell, B., Vaccari, L., Li, C., Bacosa, H., Evans, M. et. al. (2016). An in-depth survey of the oil spill literature since 1968: Long term trends and changes since Deepwater Horizon. Marine Pollution Bulletin, 113 (1-2), 371–379. doi: https://doi.org/10.1016/j.marpolbul.2016.10.028
  12. Shekhar, C. (2012). Nature Cure: Bioremediation As a Sustainable Solution for Polluted Sites. Chemistry & Biology, 19 (3), 307–308. doi: https://doi.org/10.1016/j.chembiol.2012.03.004
  13. Khatisashvili, G., Matchavariani, L., Gakhokidze, R. (2015). Improving Phytoremediation of Soil Polluted with Oil Hydrocarbons in Georgia. Soil Remediation and Plants, 547–569. doi: https://doi.org/10.1016/b978-0-12-799937-1.00019-x
  14. Koshlaf, E., Shahsavari, E., Aburto-Medina, A., Taha, M., Haleyur, N., Makadia, T. H. et. al. (2016). Bioremediation potential of diesel-contaminated Libyan soil. Ecotoxicology and Environmental Safety, 133, 297–305. doi: https://doi.org/10.1016/j.ecoenv.2016.07.027
  15. Lien, P. J., Yang, Z. H., Chang, Y. M., Tu, Y. T., Kao, C. M. (2016). Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: Effectiveness and mechanism study. Chemical Engineering Journal, 289, 525–536. doi: https://doi.org/10.1016/j.cej.2016.01.011
  16. Sobrinho, H. B., Luna, J. M., Rufino, R. D., Porto, A. L. F., Sarubbo, L. A. (2014). Biosurfactants: Classification, properties and environmental applications. Recent Developments in Biotechnology. Vol. 11. Studium Press LLC: Houston, TX, USA. Available at: https://www.researchgate.net/publication/280840894_Biosurfactants_Classification_Properties_and_Environmental_Applications
  17. Marchant, R., Banat, I. M. (2012). Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology, 30 (11), 558–565. doi: ttps://doi.org/10.1016/j.tibtech.2012.07.003
  18. Khokhlov, A., Titarenko, M., Khokhlova, L. (2018). Studies of the effectiveness of the use of biosorption complexes for purification of oil polluted sandy soils. Technology audit and production reserves, 3 (3 (41)), 16–20. doi: https://doi.org/10.15587/2312-8372.2018.134839
  19. MVV No. 081/12-0725-10. Grunty. Metodyka vykonannia vymiriuvan masovoi chastky naftoproduktiv (nepoliarnykh vuhlevodniv) hravimetrychnym metodom u diapazoni vid 20 mh/kh do 800 h/kh vkliuchno [Soils. Methodology for measuring the mass fraction of petroleum products (non-polar hydrocarbons) by gravimetric method in the range from 20 mg/kg to 800 g/kg inclusive] (2011). Kyiv: Ministerstvo ekolohiyi ta pryrodnykh resursiv Ukrainy, 14.
  20. Smit, Dzh. M. (1976). Modeli v ekologii [Models in ecology]. Мoscow: Mir, 29–31.
  21. Bereshko, I. N., Betin, A. V. (2006). Matematicheskie modeli v ekologii [Mathematical models in ecology]. Ch. 1. Kharkiv, 29–31.
  22. Lykov, A. V. (1978). Teplomassoobmen [Heat and mass exchange]. Moscow: Energiya, 128–125.
  23. Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1975). Teploperedacha [Heat transfer]. Moscow: Energiya, 107–117.
  24. Marev, V. V., Stankova, E. N. (2012). Osnovy metodov konechnykh raznostei [Basics of finite difference methods]. Sankt-Peterburg, 64.

Downloads

Published

2018-11-19

How to Cite

Siemaka, O., Shatokhina, Y., & Klintsov, L. (2018). Studying the efficiency of soil decontamination when using a device with the biosorbent “econadin. Eastern-European Journal of Enterprise Technologies, 6(10 (96), 49–55. https://doi.org/10.15587/1729-4061.2018.147684