Experimental study of the effect of nanoparticles of ТiO2 on the thermophysical properties of the refrigerant R141b

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.147960

Keywords:

R141b refrigerant, R141b/TiO2 nanoparticles nanofluid, density, surface tension, specific isobaric heat capacity, thermal conductivity, kinematic viscosity

Abstract

The results of the experimental study of the thermophysical properties of the R141b refrigerant, R141b/Span-80 surfactant solution and R141b/Span-80 surfactant/TiO2 nanoparticles nanofluid are presented. The content of both the surfactants and TiO2 nanoparticles in the objects of the study was 0.1 wt. %.

The measurements have been performed along the liquid-saturation line in the temperature ranges of (273...293) K for the density, (293...343) K for the surface tension, (300...335) K for the kinematic viscosity, (293...348) K for the thermal conductivity and (261...334) K for the specific isobaric heat capacity.

It was shown that the effect of surfactants and TiO2 nanoparticles on the density of the R141b refrigerant was insignificant and within the uncertainty of the experimental data (up to 0.08%). Additions of both the surfactants and TiO2 nanoparticles contributed to a decrease in the surface tension of R141b by up to 0.3% in comparison with pure R141b. Additives of both the surfactants and TiO2 nanoparticles in R141b contributed to an increase in viscosity of (0.8...1.0) %, and additives of surfactants led to a significant decrease in viscosity – by (3.5...5.0) % compared to the viscosity of pure R141b. It was shown that surfactant additives in R141b did not significantly influence the thermal conductivity (the effect did not exceed 0.25 %), and additions of both the surfactants and TiO2 nanoparticles lead to an increase in the thermal conductivity of the refrigerant by (0.3...1) %. A decrease of the specific isobaric heat capacity by (1.5...2.0) % was observed by adding the surfactants and TiO2 nanoparticles to R141b. The slight increase in the specific isobaric heat capacity by adding the surfactants to R141b was observed  (up to 1.0 %).

It was concluded that the influence of the addition of nanoparticles and surfactants on the thermophysical properties of the R141b refrigerant is ambiguous and unpredictable. The results of experimental studies on the effect of nanoparticles on the thermophysical properties of a refrigerant confirm the importance of developing methods for predicting these properties. This method can be based on taking into account the presence of a structured phase of the base fluid or surfactant molecules on the surface of nanoparticles

Author Biographies

Olga Khliyeva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

PhD, Аssociate Professor

Department of Thermal Physics and Applied Ecology

Tetiana Lukianova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Postgraduate student

Department of Thermal Physics and Applied Ecology

Yury Semenyuk, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Аssociate Professor

Department of Thermal Physics and Applied Ecology

Vitaly Zhelezny, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Applied Ecology

References

  1. Mahbubul, I. M., Fadhilah, S. A., Saidur, R., Leong, K. Y., Amalina, M. A. (2013). Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. International Journal of Heat and Mass Transfer, 57 (1), 100–108. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.007
  2. Alawi, O. A., Sidik, N. A. C. (2014). Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant. International Communications in Heat and Mass Transfer, 58, 79–84. doi: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.038
  3. Mahbubul, I. M., Saidur, R., Amalina, M. A. (2013). Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass Transfer, 43, 100–104. doi: https://doi.org/10.1016/j.icheatmasstransfer.2013.02.004
  4. Zhelezny, V., Geller, V., Semenyuk, Y., Nikulin, A., Lukianov, N., Lozovsky, T., Shymchuk, M. (2018). Effect of Al2O3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol. International Journal of Thermophysics, 39. doi: https://doi.org/10.1007/s10765-018-2361-8
  5. Solangi, K. H., Kazi, S. N., Luhur, M. R., Badarudin, A., Amiri, A., Sadri, R. et. al. (2015). A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy, 89, 1065–1086. doi: https://doi.org/10.1016/j.energy.2015.06.105
  6. Azmi, W. H., Sharif, M. Z., Yusof, T. M., Mamat, R., Redhwan, A. A. M. (2017). Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review. Renewable and Sustainable Energy Reviews, 69, 415–428. doi: https://doi.org/10.1016/j.rser.2016.11.207
  7. Kakaç, S., Pramuanjaroenkij, A. (2016). Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – A state-of-the-art review. International Journal of Thermal Sciences, 100, 75–97. doi: https://doi.org/10.1016/j.ijthermalsci.2015.09.021
  8. Alawi, O. A., Sidik, N. A. C., Mohammed, H. A. (2014). A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. International Communications in Heat and Mass Transfer, 54, 81–95. doi: https://doi.org/10.1016/j.icheatmasstransfer.2014.03.001
  9. Maheshwary, P. B., Handa, C. C., Nemade, K. R. (2018). Effect of Shape on Thermophysical and Heat Transfer Properties of ZnO/R-134a Nanorefrigerant. Materials Today: Proceedings, 5 (1), 1635–1639. doi: https://doi.org/10.1016/j.matpr.2017.11.257
  10. Peng, H., Lin, L., Ding, G. (2015). Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant. Energy, 89, 410–420. doi: https://doi.org/10.1016/j.energy.2015.05.116
  11. Patil, M., Kim, S., Seo, J.-H., Lee, M.-Y. (2015). Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids. Energies, 9 (1), 22. doi: https://doi.org/10.3390/en9010022
  12. Sun, B., Yang, D. (2013). Experimental study on the heat transfer characteristics of nanorefrigerants in an internal thread copper tube. International Journal of Heat and Mass Transfer, 64, 559–566. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.031
  13. Trisaksri, V., Wongwises, S. (2009). Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. International Journal of Heat and Mass Transfer, 52 (5-6), 1582–1588. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041
  14. Bhattad, A., Sarkar, J., Ghosh, P. (2018). Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3656–3669. doi: https://doi.org/10.1016/j.rser.2017.10.097
  15. Suganthi, K. S., Parthasarathy, M., Rajan, K. S. (2013). Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO–propylene glycol nanofluids. Chemical Physics Letters, 561-562, 120–124. doi: https://doi.org/10.1016/j.cplett.2013.01.044
  16. Zhelezny, V. P., Motovoy, I. V., Ustyuzhanin, E. E. (2017). Prediction of nanofluids properties: the density and the heat capacity. Journal of Physics: Conference Series, 891, 012347. doi: https://doi.org/10.1088/1742-6596/891/1/012347
  17. Zhelezny, V., Lozovsky, T., Gotsulskiy, V., Lukianov, N., Motovoy, I. (2017). Research into the influence OF AL2O3 nanoparticle admixtures on the magnitude of isopropanol molar volume. Eastern-European Journal of Enterprise Technologies, 2 (5 (86)), 33–39. doi: https://doi.org/10.15587/1729-4061.2017.97855
  18. Aybar, H. Ş., Sharifpur, M., Azizian, M. R., Mehrabi, M., Meyer, J. P. (2015). A Review of Thermal Conductivity Models for Nanofluids. Heat Transfer Engineering, 36 (13), 1085–1110. doi: https://doi.org/10.1080/01457632.2015.987586
  19. Meyer, J. P., Adio, S. A., Sharifpur, M., Nwosu, P. N. (2015). The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models. Heat Transfer Engineering, 37 (5), 387–421. doi: https://doi.org/10.1080/01457632.2015.1057447
  20. Khliyeva, O. et. al. (2017). An experimental study of heat transfer coefficient and internal characteristics of nucleate pool boiling of nanofluid R141b/TiO2. 1st European Symposium on Nanofluids (ESNf2017), 162–165.
  21. Khliyeva, O., Lukianova, T., Semenyuk, Y., Zhelezny, V., Nikulin, A. (2018). An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process. Eastern-European Journal of Enterprise Technologies, 4 (8 (94)), 59–66. doi: https://doi.org/10.15587/1729-4061.2018.139418
  22. Zhelezny, P. V., Zhelezny, V. P., Procenko, D. A., Ancherbak, S. N. (2007). An experimental investigation and modelling of the thermodynamic properties of isobutane–compressor oil solutions: Some aspects of experimental methodology. International Journal of Refrigeration, 30 (3), 433–445. doi: https://doi.org/10.1016/j.ijrefrig.2006.09.007
  23. Zhelezny, V. P., Lukianov, N. N., Khliyeva, O. Y., Nikulina, A. S., Melnyk, A. V. (2017). A complex investigation of the nanofluids R600а-mineral oil-AL2O3 and R600а-mineral oil-TiO2. Thermophysical properties. International Journal of Refrigeration, 74, 488–504. doi: https://doi.org/10.1016/j.ijrefrig.2016.11.008
  24. Lemmon, E. W., Huber, M. L., McLinden M. O. (2002). NIST reference fluid thermodynamic and transport properties – REFPROP. NIST standard reference database, 23.
  25. Zhelezny, V. et. al. (2018). Caloric properties of R600a solutions in compressor oil containing fullerenes C60. 13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018). Proceedings. Valencia. doi: http://doi.org/10.18462/iir.gl.2018.1176
  26. Shimchuk, N. A., Geller, V. Z. (2014). Influence of various factors on the thermal conductivity of nanofluids. Eastern-European Journal of Enterprise Technologies, 6 (11 (72)), 35–40. doi: https://doi.org/10.15587/1729-4061.2014.31386
  27. Tertsinidou, G. J., Tsolakidou, C. M., Pantzali, M., Assael, M. J., Colla, L., Fedele, L. et. al. (2016). New Measurements of the Apparent Thermal Conductivity of Nanofluids and Investigation of Their Heat Transfer Capabilities. Journal of Chemical & Engineering Data, 62 (1), 491–507. doi: https://doi.org/10.1021/acs.jced.6b00767

Downloads

Published

2018-11-22

How to Cite

Khliyeva, O., Lukianova, T., Semenyuk, Y., & Zhelezny, V. (2018). Experimental study of the effect of nanoparticles of ТiO2 on the thermophysical properties of the refrigerant R141b. Eastern-European Journal of Enterprise Technologies, 6(5 (96), 33–42. https://doi.org/10.15587/1729-4061.2018.147960

Issue

Section

Applied physics