Experimental research into aerodynamic characteristics of a nacelle with the enabled system of engine thrust neutralization

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.147986

Keywords:

thrust reverse, thrust neutralization, fan, nacelle, two­circuit engine, wind tunnel, run distance

Abstract

We have conducted an experimental study into aerodynamic characteristics of the structural scheme “wing ‒ two­circuit engine nacelle”. The data were acquired in the course of work of a promising system for the neutralization of a two­circuit engine’s thrust of a large by­pass ratio at aircraft landing. The relevance of the conducted study relates to the improvement of operational performance of a passenger aircraft. Based on the analysis of functions and principal schemes of reversible devices at cargo and passenger airplanes, we have proposed a promising method to neutralize the thrust of a two­circuit engine with a high by­pass ratio. Physical essence of the method for neutralization of the engine’s thrust is to substantially restrict an airflow into the engine by a technique to rotate working blades of the fan at the time of landing. We have devised a specialized procedure for conducting a weighting and drainage experiment with a model of the nacelle of a turbojet two­circuit engine in a wind tunnel. The obtained experimental data make it possible to evaluate the limits of the investigated method for neutralizing the thrust in order to shorten the length of aircraft run. By conducting a drainage experiment and applying a tuft flow visualization technique, we identified the detachment of a flow at the outer surface of the nacelle’s model with a completely closed entrance. The presence of the flow detachment predetermined an increase in the frontal drag of the nacelle model by approximately 2.5 times, revealed by the weight experiment. In the course of the weight experiment it was established that the existence of a screening surface (while the engine’s nacelle approaches a runway) increases frontal drag of the nacelle model by approximately 14 %. The drainage experiment found that such an increase in the frontal drag was due to a significant redistribution of pressure at the surface of the nacelle model. The study has shown that the idea of closing the entrance to the engine that has a large by­pass ratio at the time of aircraft landing is one of the promising methods for shortening the run length of the aircraft

Author Biographies

Vasiliy Loginov, National Aerospace University Kharkiv Aviation Institute Chkalov str., 17, Kharkiv, Ukraine, 61000

Doctor of Technical Sciences, Senior Researcher

Department of Aircraft Engine Design

Yevhen Ukrainets, Ivan Kozhedub Kharkiv National University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of the Design and Strength of Aircraft and Engines

Igor Kravchenko, State Enterprise "Ivchenko-Progress" Ivanova str., 2, Zaporizhia, Ukraine, 69068

Doctor of Technical Sciences, Assistant Professor, Director of the enterprise

Alexandr Yelanskiy, State Enterprise "Ivchenko-Progress" Ivanova str., 2, Zaporizhia, Ukraine, 69068

PhD

Department of Advanced Development and Gas Dynamic Calculations

References

  1. Inozemcev, A. A., Nihamkin, M. A., Sandrackiy, V. L. (2008). Osnovy konstruirovaniya aviacionnyh dvigateley i gazoturbinnyh ustanovok. Vol. 1. Moscow: Mashinostroenie, 208.
  2. Eger, S. M., Mishin, V. F., Liseycev, N. K. (1983). Proektirovanie samoletov. Moscow: Mashinostroenie, 616.
  3. Nechaev, Yu. N. (1990). Teoriya aviacionnyh dvigateley. Moscow: VVIA im. N. E. Zhukovskogo, 878.
  4. Polyakov, V. V. (1978). Reversivnye ustroystva silovyh ustanovok s vozdushno-reaktivnymi dvigatelyami. Itogi nauki i tekhniki. Aviastroenie. Vol. 5. Moscow: VINITI, 212.
  5. Jane’s. Aero-Engines Yearbook 17/18 (2018). IHS, 1670.
  6. Gilerson, A. G. (1995). Effektivnost' reversivnyh ustroystv pri tormozhenii samoletov. Moscow: Mashinostroenie, 192.
  7. Svyatogorov, A. A. (1981). Obobshchenie massy reversivnyh ustroystv turboreaktivnyh dvigateley. Trudy CIAM. No. 927. Moscow, 29.
  8. Danil'chenko, V. P. (2008). Proektirovanie aviacionnyh gazoturbinnyh dvigateley. Samara: Izd-vo SNC RAN, 620.
  9. Shul'gin, V. A. (1984). Dvuhkonturnye turboreaktivnye dvigateli maloshumnyh samoletov. Moscow: Mashinostroenie, 168.
  10. Kulikov, G. G., Kotenko, P. S., Fatikov, V. S., Ishchuk, V. P. (2008). Obespechenie potrebnyh harakteristik korotkogo vzleta i posadki samoleta s TVVD. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 4, 29–33.
  11. Ishchuk, V. P. (2006). Regulirovanie otricatel'noy tyagi silovoy ustanovki transportnogo samoleta. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 7, 45–57.
  12. Ostrouhov, S. P. (2009). Issledovanie kartiny techeniya okolo vozdushnogo vinta v profilirovannom kol'ce i bez kol'ca pri reverse tyagi. Uchenye zapiski CAGI, XL (2), 96–103.
  13. Ruizhan, Q., Ziqiang, Z., Zhuoyi, D. (2011). Thrust Reverser Optimization for Safety with CFD. Procedia Engineering, 17, 595–602. doi: https://doi.org/10.1016/j.proeng.2011.10.075
  14. Bennouna, F. O., Langlois, S. N. (2012). Design of Accommodation Process Applied to the Thrust Reverser of Aircraft Nacelle. IFAC Proceedings Volumes, 45 (13), 547–552. doi: https://doi.org/10.3182/20120620-3-dk-2025.00077
  15. Malaek, S. M., Parastari, J. (2001). Thrust reverser modulation – a tool to command landing ground run. Aircraft Design, 4 (4), 179–191. doi: https://doi.org/10.1016/s1369-8869(01)00009-x
  16. Asensio, C., Moschioni, G., Ruiz, M., Tarabini, M., Recuero, M. (2013). Implementation of a thrust reverse noise detection system for airports. Transportation Research Part D: Transport and Environment, 19, 42–47. doi: https://doi.org/10.1016/j.trd.2012.12.003
  17. Li, J., Gao, Z., Huang, J., Zhao, K. (2013). Aerodynamic design optimization of nacelle/pylon position on an aircraft. Chinese Journal of Aeronautics, 26 (4), 850–857. doi: https://doi.org/10.1016/j.cja.2013.04.052
  18. Hoheisel, H. (1997). Aerodynamic aspects of engine-aircraft integration of transport aircraft. Aerospace Science and Technology, 1 (7), 475–487. doi: https://doi.org/10.1016/s1270-9638(97)90009-2
  19. Komov, A. A. (2008). Dynamics-case improvement of trust reversers. Nauchniy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviacii, 134, 45–51.
  20. Carlson, J. R., Compton, W. B. (1984). An experimental investigation of nacelle-pylon installation on an unswept wing at subsonic and transonic speeds. National Aeronautics and Space Administration, 204.
  21. Radespiel, R., Francois, D., Hoppmann, D., Klein, S., Scholz, P., Wawrzinek, K. et. al. (2016). Simulation of Wing and Nacelle Stall. 54th AIAA Aerospace Sciences Meeting. doi: https://doi.org/10.2514/6.2016-1830
  22. Probst, A., Schulze, S., Radespiel, R., Kähler, C. J. (2013). Numerical Simulation of Engine-Inlet Stall with Advanced Physical Modelling Compared to Validation Experiments. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 565–573. doi: https://doi.org/10.1007/978-3-642-35680-3_67
  23. Jung, U., Breitsamter, C. Experimental Aerodynamic Investigations on Commercial Aircraft High Lift Characteristics by Large Engine Nacelles. Available at: https://www.researchgate.net/publication/268299750
  24. Nacelle-wing integration (1991). NASA. Langley Research Center, First Annual High-Speed Research Workshop. Available at: https://ia801907.us.archive.org/17/items/NASA_NTRS_Archive_19940028998/NASA_NTRS_Archive_19940028998.pdf
  25. Kwon, E.-Y., Leblanc, R., Garem, J.-H. (2001). Experimental investigation of sonic jet flows for wing/nacelle integration. KSME International Journal, 15 (4), 522–530. doi: https://doi.org/10.1007/bf03185113
  26. Dillmann, A., Heller, G., Krämer, E., Wagner, C., Bansmer, S., Radespiel, R., Semaan, R. (Eds.) (2016). New Results in Numerical and Experimental Fluid Mechanics XI. Contributions to the 20th STAB/TGLR symposium Braunschweig. Springer, 767. doi: https://doi.org/10.1007/978-3-319-64519-3
  27. Blockley, R., Agarwal, R., Collier, F., Schaefer, A., Seabridge, A. (Eds.) (2016). Green Aviation. John Wiley & Sons, 536.
  28. Li, K., Xiao, Z., Wang, Y., Du, J., Li, K. (2013). Numerical Simulations for DLRF6 Wing Body Nacelle Pylon with Enhanced Implicit Hole Cutting Method. Parallel Computational Fluid Dynamics: 25th International Conference, ParCFD. Changsha, 185–194.
  29. Anipko, O. B., Bashinskiy, V. G., Ukrainec, E. A. (2013). Aerodinamicheskiy oblik, radiolokacionnaya i infrakrasnaya zametnost' samoletov voennogo naznacheniya pri ih obnaruzhenii. Zaporozh'e: “AO Motor Sich”, 250.
  30. Anipko, O. B., Gazaev, V. V., Dzhimiev, A. R., Spirkin, E. V., Ukrainec, E. A., Shabrat, I. I. (2009). Eksperimental'noe opredelenie znacheniy kriteriev sovershenstva aerodinamicheskoy truby T-1 Har'kovskogo universiteta Vozdushnyh Sil. Aerogidrodinamika i aeroakustika: problemy i perspektivy, 28–32.
  31. Byushgens, G. S. (Ed.) (1998). Aerodinamika, ustoychivost' i upravlyaemost' sverhzvukovyh samoletov. Moscow: Nauka, Fizmatlit, 816.
  32. Tekhnicheskie usloviya na proektirovanie i izgotovlenie modeley, prednaznachennyh dlya ispytaniy v aerodinamicheskih trubah T-102 i T-103 CAGI (1978). Moscow: Izd. Otdel CAGI, 39.
  33. Radcig, A. N. (2004). Eksperimental'naya gidroaeromekhanika. Mosocw: MAI, 296.
  34. Krasnov, N. F. (1981). Osnovy aerodinamicheskogo rascheta. Mosocw: Vysshaya shkola, 496.
  35. Loginov, V. V., Ukrainetc, E. A., Kravchenko, I. F., Yelanskiy, A. V. (2014). Engineering-and-economical performance estimation methodic of a light domestic airliner – turboprop engine system. Systemy ozbroiennia i viyskova tekhnika, 1, 150–160.

Downloads

Published

2018-11-22

How to Cite

Loginov, V., Ukrainets, Y., Kravchenko, I., & Yelanskiy, A. (2018). Experimental research into aerodynamic characteristics of a nacelle with the enabled system of engine thrust neutralization. Eastern-European Journal of Enterprise Technologies, 6(8 (96), 65–73. https://doi.org/10.15587/1729-4061.2018.147986

Issue

Section

Energy-saving technologies and equipment