Method of estimation of residual operation life of materials under long-term statistic loading

Authors

  • Олександр Володимирович Желдубовський Institute of Mechanics S.P. Tymoshenko National Academy of Sciences of Ukraine, 03057 Str. Nesterova, 3, Ukraine
  • Олександр Тимофійович Сердітов National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37, Ukraine
  • Юрій Валентинович Ключников National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37, Ukraine
  • Павло Васильович Кондрашев National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37, Ukraine https://orcid.org/0000-0002-7428-710X
  • Дмитро Олександрович Дурницький National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14819

Keywords:

Damage, deformation, creep, specific work of deformation, criterion of damage, damage threshold

Abstract

In the modern machine building production with high level of competitiveness, the great importance plays the performance and reliability of parts and components of various machine building structures, which often operate under a power impact of various factors. In this regard, there is a need to improve the methods of diagnostics of the condition of the material for fabrication of these constructions.

The study determined the current value of the accumulated damage of the material, which was performed using the proposed experiment-calculated method of estimation of the residual operation life of the material under the long-term statistic loading, and which was based on the experimental determination of three values of the accumulated damage at the initial stage of damage. The authors proposed to use the value of specific work of deformation as a criterion of damage, which allowed the identification of damage parameter as the ratio of the current and total values of the specific work of deformation. The developed method of kinetic diagrams of damage allows the reliable estimation of the exhausted and residual operation life of the material.

Thus, the results of the research are of scientific and practical interest. The authors showed the possibility of constructing a method of rapid diagnostics estimation of damage of the material in relation to the operating structures

Author Biographies

Олександр Володимирович Желдубовський, Institute of Mechanics S.P. Tymoshenko National Academy of Sciences of Ukraine, 03057 Str. Nesterova, 3

Ph.D., Senior Researcher

Олександр Тимофійович Сердітов, National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37

Ph.D., associate professor

Department of Laser Technology and Physics and engineering technology

Юрій Валентинович Ключников, National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37

Ph.D., associate professor

Department of Laser Technology and Physics and engineering technology

Павло Васильович Кондрашев, National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37

Ph.D., associate professor

Department of Laser Technology and Physics and engineering technology

Дмитро Олександрович Дурницький, National Technical University of Ukraine «Kiev Polytechnic Institute» 03056, Kiev, Peremogy ave., 37

Student

Department of Laser Technology and Physics and engineering technology

References

  1. Голуб, В.П. Высокотемпературное разрушение материалов при циклическом нагружении [Текст] / В.П. Голуб, А.Д. Погребняк.-Киев: Наук, думка, 1994.-228 с.
  2. Chaboche, J.L. (1991). Continuous damage mechanics-a tool to describe phenomena before crock initiation. Nuclear Engineering and Design, 64, 233-247.
  3. Lemaitre J. (1985). Coupled elasto-plasticity and damage constitutive equations. Computer Methodsin Appl. Mech.andEng, 51, 31-49.
  4. Работнов, Ю.Н. Ползучесть элементов конструкций [Текст] / Ю.Н. Работнов.-М.: Наука, 1966-752 с.
  5. Качанов Л.М. Основы механики разрушения [Текст] / Л.М. Качанов.-М.: Наука, 1974.-312 с.
  6. Dyson, B.F., Leckie F.A. (1989). Damage Equations for physically-based creep life. Аdv.Fract. Res.: 7th Int. Conf. Fracture.-Houston, Tex., 2169-2175.
  7. Голуб, В.П. Способ определения поврежденности материала при ползучести [Текст] / Голуб В.П., Желдубовский А.В., Романов А.В. // Журн. бюллетень изобретений.-1991, № 35.-С. 157.
  8. Фридман, Я.Б. Механические свойства металлов [Текст]. Ч 1. Деформация и разрушение / Я.Б. Фридман.-М.: Машиностроение, 1974.-472 с.
  9. Fonseka G.U., Krajcinovic D. (1981). The continuum damages theory of brittle materials. Pan 2: Uniaxial and plan response models. ASME J. of Appl. Mech., 48, 816-824.
  10. Leckie F.A., Hayhurst D.R. (1977). Constitutive equations for creep rupture. Acta Met., 25, 1059-1070.
  11. Kujawski D., Ellyin F. (1988). On the concept of cumulative fatigue damage. Int. J. of Fract., 37, 263-278.
  12. Желдубовский, А.В. Установка для исследования микротвердости жаропрочных материалов в процессе высокотемпературного многоциклового нагружения [Текст] / А.В. Желдубовский // Журн. проблем прочности.-1981.-№ 9.-С. 111-114.
  13. Голуб, В.П. Нелинейная механика континуальной поврежденности и её приложение к задачам ползучести и усталости [Текст] / В.П. Голуб // Журн. прикладная механика.-2000.-Т. 36, №3.-С. 32-67.
  14. Каминский, А.А. Методы определения напряженно-деформированного состояния и трещиностойкости газо- и нефтепроводов [Текст] / А.А. Каминский, В.Н. Бастуй. // Журн. прикладная механика.-1997.-Т. 33, № 7.- С. 3-30.
  15. Golub V.P, Pogrebnyak A.D. (1994). High-temperature fracture of materials under cyclic nagruzhenii. Kiev: Naukova Dumka, 228.
  16. Chaboche J.L. (1991). Continuous damage mechanics-a tool to describe phenomena before crock initiation. Nuclear Engineering and Design, 64, 233-247.
  17. Lemaitre J. (1985). Coupled elasto-plasticity and damage constitutive equations. Computer Methodsin Appl. Mech.andEng, 51, 31-49.
  18. Rabotnov Y.N. (1966). Creep elements konstruktsiy. M.: Science, 752.
  19. Kachanov L.M. Fundamentals of mechanics razrusheniya. (1974). M.: Science, 312.
  20. Dyson B.F., Leckie F.A. (1989). Damage Equations for physically-based creep life. Аdv.Fract. Res.: 7th Int. Conf. Fracture.-Houston, Tex., 2169-2175.
  21. Golub V.P., Zheldubovsky A.V., Romanov A.V. (1991). The method for determining the damaged material creep. Bulletin izobreteniy, 35, 157.
  22. Friedman J.B. (1974). Mechanical properties of metals. In 2 ch.-M.: Engineering, Deformation and razrushenie., 1, 472.
  23. Fonseka G.U., Krajcinovic D. (1981). The continuum damages theory of brittle materials. Pan 2: Uniaxial and plan response models. ASME J. of Appl. Mech., 48, 816-824.
  24. Leckie F.A., Hayhurst D.R. (1977). Constitutive equations for creep rupture. Acta Met., 25, 1059-1070.
  25. Kujawski D., Ellyin F. (1988). On the concept of cumulative fatigue damage. Int. J. of Fract., 37, 263-278.
  26. Zheldubovsky A.V. (1981). Apparatus for studying micro-hardness of heat-resistant materials in the process of high-temperature multi-cycle. Problems. prochnosti, 9, 111-114.
  27. Golub V.P. (2000). Nonlinear mechanics of continuum damage and its application to problems of creep and fatigue. J. Appl. mechanics, 3, 32-67.
  28. Kaminski A., Basti V.N. (1997). Methods for determination of the stress-strain state and fracture oil and gas pipelines. J. Appl. mehanika, 7, 3-30.

Published

2013-06-20

How to Cite

Желдубовський, О. В., Сердітов, О. Т., Ключников, Ю. В., Кондрашев, П. В., & Дурницький, Д. О. (2013). Method of estimation of residual operation life of materials under long-term statistic loading. Eastern-European Journal of Enterprise Technologies, 3(7(63), 24–27. https://doi.org/10.15587/1729-4061.2013.14819

Issue

Section

Applied mechanics