Influence of hot water temperature pumped into force mining holes on output of oil

Authors

  • Владимир Петрович Кравченко Odessa National Polytechnic University Shevcheko 1, Odessa, 65044, Ukraine
  • Алексей Юрьевич Погосов Odessa National Polytechnic University Shevcheko 1, Odessa, 65044, Ukraine
  • Разуки Али Абдул Хусейн Odessa National Polytechnic University Shevcheko 1, Odessa, 65044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14833

Keywords:

oil flow rate, thermal methods of intensification of extraction, viscosity, density, temperature of coolant

Abstract

The subject of the study is the increase of output of crude oil, depending on the temperature of pumped water. The pumping into holes of a coolant is one of the main methods to improve oil extraction. Preparation of the coolant can be carried out with the help of heat station using organic and nuclear power. For the selection and optimization of the parameters of these power plants, it is necessary to know the dependence of consumption of crude oil on the temperature of the pumped coolant. The purpose of the article is to obtain such dependence. The method of achievement of the results is the use of the formula of Walter for the temperature dependence of kinematic viscosity and of the formula of Mendeleev for density of oil. Currently, to maintain the sheeted pressure, cold water is injected into the pumped mining holes. It is known that the oil output is inversely proportional to its viscosity. Increase of the output of crude oil is determined as the ratio of the dynamic viscosity of the oil at 40 º C to the viscosity of oil at a predetermined temperature. To calculate this ratio we derived temperature dependences of kinematic viscosity, density and dynamic viscosity. We obtained the desired dependence of the coefficient of increase of oil output to use it as a coolant of hot water, taking into account 42%  of loss of heat into surrounding rocks.

Author Biographies

Владимир Петрович Кравченко, Odessa National Polytechnic University Shevcheko 1, Odessa, 65044

Professor

Department of Applied ecology and hydraulic gas dynamics

Алексей Юрьевич Погосов, Odessa National Polytechnic University Shevcheko 1, Odessa, 65044

Professor

Department of Nuclear Power Plant

Разуки Али Абдул Хусейн, Odessa National Polytechnic University Shevcheko 1, Odessa, 65044

Magistr

Department of Nuclear Power Plant

References

  1. Сургучев, М. Л. Вторичные и третичные методы увеличения нефтеотдачи пластов [Текст] / М. Л. Сургучев. - М. : Недра, 1985. – 308 с.
  2. Бурже, Ж. Термические методы повышения нефтеотдачи пластов [Текст] / Ж. Бурже, П. Сурио, М. Комбарну. - М. : Недра, 1989. - 422 с.
  3. Верхивкер, Г. П. Основы расчета и конструирования ядерных энергетических реакторов [Текст] / Г. П. Верхивкер, В. П. Кравченко – Одесса : ТЭС, 2008. – 409 с.
  4. Росляк, А. Т. Разработка нефтяных и газовых месторождений: Учебно-методическое пособие [Текст] / А. Т. Росляк. – Томск : Томский политехнический университет, 2007. - 66 с.
  5. Гиматудинов, Ш. К. Физика нефтяного и газового пласта. Изд. 3: Учебник для студентов вузов [Текст]/ Ш. К. Гиматудинов, А. И. Ширковский. – М. : Недра, 1982. - 313 с.
  6. Тугунов, П. И. Типовые расчеты при проектировании и эксплуатации нефтебаз и нефтепроводов: учебное пособие для вузов [Текст] /
  7. П. И. Тугунов, В. Ф. Новоселов, А. А. Коршак, А. М. Шаммазов. - Уфа: ДизайнПолиграфСервис, 2008. – 658 с,
  8. Ивченко, Е. Г. Сернистые и высокосернистые нефти Башкирской АССР (Справочная книга) [Текст] / Е. Г. Ивченко, Г. В. Севастьянова. – М. : Государственное научно-техническое издательство нефтяной и горно-топливной литературы, 1963. - 232 с.
  9. Мазепа, Б. А. Парафинизация нефтесбросных систем и промыслового оборудования [Текст] / Б. А. Мазепа. – М. : Недра, 1966. - 185 с.
  10. Тронов, В. П. Системы нефтегазосбора и гидродинамика основных технологических процессов [Текст] / В. П. Тронов. – Казань : Изд-во «Фэн», 2002. - 512 с.
  11. Полищук, Ю. М., Ященко И. Г. Физико-химические свойства нефтей: статистический анализ пространственных и временных изменений [Текст] / Ю. М. Полищук, И. Г. Ященко. – Новосибирск : Изд-во СО РАН, филиал «Гео», 2004. – 109 с.
  12. Surguchev, М. (1988). Second and tertiary methods of increase of oil extraction coefficient of layers. Nedra, 308.
  13. Burge, G., Surio, P., Kombarnu, M. (1989). Thermal methods of increase of oil extraction coefficient of layers. Nedra, 422.
  14. Verkhivker, G., Kravchenko, V. (2008). Bases of calculation and constructing of nuclear power reactors. Odessa: TES, 409.
  15. Roslyak, A. (2007). Development of oil and gas deposits. Tomsk: Tomsk polytechnic university, 66.
  16. Gimatudinov, Sh., Shirkovskiy, A. (1982). Physics of oil and gas layer. Publ. 3. Nedra, 313.
  17. Tugunov, P., Novosyolov, V., Korshak, A., Shammazov, A. (2008). Model calculations at planning and exploitation of oil bases and oil pipelines. Ufa: DizaynPoligrafServis, 658.
  18. Ivchenko, E., Sevast'yanova, G. (1963). Sulphureous and high- sulphureous oils of Bashkir ASSR (Reference book). M.: the State scientific and technical publishing house of oil and mountain-fuel literature, 232.
  19. Mazepa B. (1966). A deposit of paraffin in the sewage systems and oil fields equipment. Nedra, 185.
  20. Thronov, V. (2002). Systems of oil collection and hydrodynamics of basic technological processes. Kazan': Fen, 512.
  21. Polischuk Yu., Yaschenko I. (2004). Physical and chemical properties of oils: statistical analysis of spatial and temporal changes. Novosibirsk: Siberian separation of the Russian academy «Geo», 109.

Published

2013-06-20

How to Cite

Кравченко, В. П., Погосов, А. Ю., & Абдул Хусейн, Р. А. (2013). Influence of hot water temperature pumped into force mining holes on output of oil. Eastern-European Journal of Enterprise Technologies, 3(8(63), 35–39. https://doi.org/10.15587/1729-4061.2013.14833

Issue

Section

Energy-saving technologies and equipment