Research of the impact of the method of heating of heat units on the qualitative characteristics of treated materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.148372

Keywords:

heat-treatment furnace, boundary layer, decarburization, flat-flame burner, temperature control

Abstract

An analytical method for calculating the chemical potentials of the components of the gas-solid system based on thermodynamic calculations of carbon potentials of the С–О–Н–N gas mixture (combustion products of the methane-air mixture) and the solid phase (alloyed steel) is developed. Dependences describing the influence of the main parameters of heating the medium composition, flow rate, as well as their interaction, on metal losses associated with decarburization are obtained.

Thermodynamic calculations of carbon potentials of alloyed steel and natural gas combustion products of different composition (α=0.2÷1.2), metal and combustion products temperatures of 1,100÷1,500 K are performed.

Based on the analysis of the structure of the thermal and diffusion boundary layers, it is proved that the decrease in the temperature of the layer of combustion product flowing around the solid product and surface flow rate reduces the diffusion flow of carbon in the boundary layer. This effect reduces the decarburization of steel.

It is found that when heating the heat unit according to the principle of indirect radiant heating (IRH) during the operation of the flat-flame burner, the main gas volume, localized at the metal surface, has a temperature significantly lower than the layer adjacent to the lining. This reduces the metal loss with decarburization compared with furnaces of the traditional heating system.

Combustion of gas in flat-flame burners with an intense circulation of combustion products in the working space of the heat unit ensures that the heated products have a uniform composition of combustion products corresponding to a practically equilibrium one. This allows recommending flat-flame burners for widespread use in modern heat-power units in the industry

Author Biographies

Valeriy Nikolsky, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Energetic

Olga Oliynyk, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Computer-integrated Technologies and Metrology

Andrii Pugach, Dnipro State Agrarian and Economic University Serhiya Efremova str., 25, Dnipro, Ukraine, 49027

Doctor of Science in Public Administration, PhD, Associate Professor

Department of Agricultural Machinery

Oleksandr Alieksandrov, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

PhD, Senior LecturerDepartment of Applied Mechanics

Olena Gnatko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Senior Lecturer

Department of Applied Mechanics

Yevhenii Chernetskyi, Ukrainian State University of Chemical Technology Gagarin ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Computer-integrated Technologies and Metrology

References

  1. Kuznetsov, V. A., Trubaev, P. A. (2018). Resources and Problems of the Mathematical Simulating Thermo-Technological Processes. Journal of Physics: Conference Series, 1066, 012024. doi: https://doi.org/10.1088/1742-6596/1066/1/012024
  2. Nikolsky, V., Oliynyk, O., Shvachka, A., Nachovnyy, I. (2017). Thermal treatment of concentrated liquid toxic waste and automatic control of process efficiency. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 26–31. doi: https://doi.org/10.15587/1729-4061.2017.111846
  3. Lim, K., Lee, S., Lee, C. (2007). An experimental study on the thermal performance of ground heat exchanger. Experimental Thermal and Fluid Science, 31 (8), 985–990. doi: https://doi.org/10.1016/j.expthermflusci.2006.10.011
  4. Eynard, J., Grieu, S., Polit, M. (2011). Modular approach for modeling a multi-energy district boiler. Applied Mathematical Modelling, 35 (8), 3926–3957. doi: https://doi.org/10.1016/j.apm.2011.02.006
  5. Reddy, A., Kreider, J. F., Curtiss, P. S., Rabl, A. (2016). Heating and Cooling of Buildings: Principles and Practice of Energy Efficient Design. CRC Press, 900. doi: https://doi.org/10.1201/9781315374567
  6. Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K., Speer, J. G. (2006). Quenching and partitioning martensite – A novel steel heat treatment. Materials Science and Engineering: A, 438-440, 25–34. doi: https://doi.org/10.1016/j.msea.2006.02.133
  7. Wu, Y.-L., Jiang, Z.-Y., Zhang, X.-X., Xue, Q.-G., Yu, A.-B., Shen, Y.-S. (2017). Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling. Metallurgical and Materials Transactions B, 48 (5), 2403–2418. doi: https://doi.org/10.1007/s11663-017-1034-5
  8. Grishunin, V. A., Gromov, V. E., Ivanov, Yu. F., Teresov, A. D., Konovalov, S. V. (2013). Evolyuciya fazovogo sostava i defektnoy substruktury rel'sovoy stali, podvergnutoy obrabotke vysokointensivnym elektronnym puchkom. Poverhnost'. Rentgenovskie, sinhrotronnye i neytronnye issledovaniya, 10, 82–88. doi: https://doi.org/10.7868/s0207352813090096
  9. Gao, Y., Li, X., Yang, Q., Yao, M. (2007). Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel. Materials Letters, 61 (2), 466–469. doi: https://doi.org/10.1016/j.matlet.2006.04.089
  10. Raether, F., Klimera, A., Baber, J. (2008). In situ measurement and simulation of temperature and stress gradients during sintering of large ceramic components. Ceramics International, 34 (2), 385–389. doi: https://doi.org/10.1016/j.ceramint.2006.10.025
  11. Nikolsky, V., Oliynyk, O., Yaris, V., Reshetnyak, I. (2017). Application of electromagnetic fields for intensification of heat and mass exchange in combined gas-liquid processes. Eastern-European Journal of Enterprise Technologies, 3 (8 (87)), 33–39. doi: https://doi.org/10.15587/1729-4061.2017.103868
  12. Pavlov, D. Yu., Sirotkin, O. S., Trubacheva, A. M., Sirotkin, R. O. (2012). Himicheskaya priroda gomoyadernyh (prostyh) neorganicheskih veshchestv, ih okislitel'no-vosstanovitel'nye svoystva i vliyanie na energiyu Gibbsa obrazovaniya oksidov. Vestnik Kazanskogo tekhnologicheskogo universiteta, 15 (9), 35–38.
  13. Nikolsky, V. Ye., Lobodenko, A. V., Reshetnyak, I. L. (2016). Thermodynamic analysis of thermal and diffusion boundary layers influence upon the thermo-technological processes parameters in gas – solid systems. Industrial Technology and Engineering, 2 (19), 43–52.
  14. Mogutnov, B. M., Tomilin, I. A., Shvarcman, L. A. (1972). Termodinamika zhelezouglerodistyh splavov. Moscow: Metallurgiya, 328.
  15. Bogushevskiy, V. S., Mel'nik, S. G., Zhuk, S. V. (2014). Obezuglerozhivanie stali kak osnovnoy parametr optimal'nogo upravleniya kislorodno-konverternym processom. Metall i lit'e Ukrainy, 2, 14–16.
  16. Makarov, M. A., Aleksandrov, A. A., Dashevskiy, V. Ya. (2006). Issledovanie processa glubokogo obezuglerozhivaniya stali. Metally, 3, 3–7.
  17. Mitchell, R. E., Ma, L., Kim, B. (2007). On the burning behavior of pulverized coal chars. Combustion and Flame, 151 (3), 426–436. doi: https://doi.org/10.1016/j.combustflame.2007.07.014
  18. Gorsky, V. V., Zabarko, D. A., Olenicheva, A. A. (2012). Investigation of the mass loss of a carbon material within the framework of a complete thermochemical model of its destruction in the case of equilibrium chemical reactions in the boundary layer. High Temperature, 50 (2), 286–291. doi: https://doi.org/10.1134/s0018151x12020083
  19. Nikol'skiy, V. E., Soroka, B. S. (1982). Uluchshenie kachestva nagreva stali v termicheskih toplivnyh pechah kosvennogo radiacionnogo nagreva. Kyiv: Znanie, 23.
  20. Nikolsky, V., Oliynyk, O., Ved, V., Pugach, A., Turluev, R., Alieksandrov, O., Kosarev, V. (2018). Research into the impact of structural features of combustion chamber in energy-technological units on their operational efficiency. Eastern-European Journal of Enterprise Technologies, 5 (8 (95)), 58–64. doi: https://doi.org/10.15587/1729-4061.2018.143316
  21. Soroka, B. S. (1992). Intensifikaciya teplovyh processov v toplivnyh pechah. Kyiv: Naukova dumka, 412.

Downloads

Published

2018-11-27

How to Cite

Nikolsky, V., Oliynyk, O., Pugach, A., Alieksandrov, O., Gnatko, O., & Chernetskyi, Y. (2018). Research of the impact of the method of heating of heat units on the qualitative characteristics of treated materials. Eastern-European Journal of Enterprise Technologies, 6(6 (96), 37–43. https://doi.org/10.15587/1729-4061.2018.148372

Issue

Section

Technology organic and inorganic substances