Automated identification of type and evaluation of noise parameter with multifractal indices
DOI:
https://doi.org/10.15587/1729-4061.2013.14842Keywords:
multifractal indices, authentication of type of noise, evaluation of parameter of noise, additive-fluctuation, impulsive and multiplicative noiseAbstract
The method of the automated authentication of type and evaluation of parameter of additive-fluctuation, impulsive and multiplicative noise is worked out and investigated, and also the mixed noise on images by means of multifractal indices. Descriptions of the worked out method are investigated on test images.
Method of determination of type and evaluation of parameter of noise are used in such areas of processing of images as medicine, astronomy, radio-location, non-destructive control, technical diagnostics and other areas.
A method consists of the next stages: choice of homogeneous area dark-and-light by a man-operator; calculation of multifractal indices as a vector of signs(Нx, Hy, Hxy, Сх, Су, Cxy); determination of type of hindrance dark-and-light; evaluation of parameter of noise in the areas of multifractal indices and output of identifier of type and value of parameter of noise.
On the conducted results of experiment an offered method on the basis of multifractal indexes is better on 2,78 %, what base a method with the use of neural network. Worked out method at the evaluation of parameter of impulsive noise by value multifractal index it is recommended to apply at values the amounts of failure pixels of impulsive noise of 5% and higher. The results of evaluation of parameter of multiplicative and gauss noise on a multifractal index showed the worked out method, that it is expedient to apply it for the choice of parameter of rough-down of imageReferences
- Lee, I.S. Digital image enhancement and noise filtering by use of local statistics /I. S. Lee // IEEE Trans. on PAMI. – 1980. – v. 2, № 3. – P. 165 – 168.
- Kuan, D.T. Adaptive noise smoothing filter for images with signal dependent noise / D. T.Kuan. // IEEE Trans. on PAMI. – 1985. – v. 7, № 3. – P. 165 – 177.
- Canny, I. A computational approach to edge detection /I. Canny // IEEE Trans. on PAMI. – 1986. – v. 8, № 6. – P. 679 – 693.
- Deriche, R. Using Canny’s criteria to derive an optimal edge detector recursively implemented /R. Deriche // International Gournal on Computer Vision. – 1987. – v. 1. – P. 167 – 187.
- Kundur, D. Blinol image deconvolution/D.Kundur, D. Hatzinakos // IEEE signal Processing Magazine. – 1996. – v. 13(3), № 5. – P. 43 – 64.
- Davis, A.Multifractal characterizations of nonstationary and intermittency in geophysical fields: observed, retrieved or simulated / A. Davis, A. Marshak, W. Wiscombe, R. Cahalan. // Journal of Geophysical Research. – 1994. – V. 99, № D4. – P. 8055 – 8072.
- Дискриминантный анализ [Электронный ресурс] / Москва. Лаборатория рекламы и маркетинга и PublicRelations.–Режим доступа: WWW/ URL: http://http://www.advlab.ru/articles/article531.htm/ – 2006 г.
- Айвазян, С.А. Прикладная статистика: исследование зависимостей / С.А. Айвазян, И.С. Енюков, Л.Д. Мешалкин // Финансы и статистика, 1985. – 524 с.
- Santhanam, T. A novel approach to classify noises in images using artificial neural network /T.Santhanam, S. Radhika // J. of Computer Science. – 2010. – Vol.6, № 5. – P. 506 – 510.
- Крылов, В.Н. Оценивание параметра гауссовского шума на изображении с помощью мультифрактальных показателей / В.Н. Крылов, Н.И. Науменко, М.В. Полякова, Ю.В. Емец // Военный институт Киевского национального университета имени Тараса Шевченко. – К.: ВИКНУ, 2009. – Вып. № 24.– С. 127 – 134.
- Полякова, М.В. Оценивание параметра импульсного шума на изображении с помощью мультифрактальных показателей / М.В. Полякова, В.Н. Крылов, Ю.В. Емец // Методы и системы оптико-электронной и цифровой обработки изображений и сигналов. – Винница, 2010. – № 1 (19). – С. 5 – 13.
- Емец, Ю.В. Оценивание параметра мультипликативного шума на изображении с помощью мультифрактальных показателей / Ю.В. Емец, // Искусственный интеллект. – Донецк, 2010. – № 4. – С. 212 – 220.
- Lee, I.S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. on PAMI, 2(3), 165 – 168.
- Kuan, D. T. (1985). Adaptive noise smoothing filter for images with signal dependent noise. IEEE Trans. on PAMI, 7(3), 165 – 177.
- Canny, I. (1986). A computational approach to edge detection. IEEE Trans. on PAMI, 8(6), 679 – 693.
- Deriche, R. (1987). Using Canny’s criteria to derive an optimal edge detector recursively implemented. International Gournal on Computer Vision, 1, 167 – 187.
- Kundur, D., Hatzinakos, D. (1996). Blinol image deconvolution. IEEE signal Processing Magazine, 13(3), 43 – 64.
- Davis, A., Marshak, A., Wiscombe, W., Cahalan, R. (1994). Multifractal characterizations of nonstationary and intermittency in geophysical fields: observed, retrieved or simulated. Journal of Geophysical Research, 99(4), 8055 – 8072.
- Discriminant analysis [Electronic resource]. (2006). Moscow. A laboratory of advertisement and marketing and Public Relations. - is access Mode : of WWW/ URL : http:// http://www.advlab.ru/articles/article531.htm.
- Aivozan, С. А., Enukov, I. C., Mechalkin, L. D. (1985). Applied statistics: research of dependences. Finances and statistics, 524.
- Santhanam, T., Radnika, S. (2010). A novel approach to classify noises in images using artificial neural network. Journal of Computer Science, 1.6(5), 506 – 510.
- Krulov, V.N., Naymenko, N.I., Polyakova, M.V., Emets, Y.V. (2009). Evaluation of parameter of Gausse noise dark-and-light by means of multifractal indexes. The Military institute of the Kyiv national university of the name of Taras Shevchenko. Kyiv, 24, 127 – 134.
- Polyakova, M.V., Krulov, V.N., Emets, Y.V. (2010). Evaluation of parameter of impulsive noise dark-and-light by means of multifractal indexes. Methods and system optical-electronic and digital processing of images and signal.Vinnytsya, 1(19), 5 – 13.
- Emets, Y.V. (2010). Evaluation of parameter of multiplicative noise dark-and-light by means of multifractal indexes. Artificial intelligence. Donetsk, 4, 212 – 220.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Марина Вячеславовна Полякова, Юрий Владимирович Емец
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.