Mathematical model of water droplets evaporation in air stream

Authors

  • Микола Олександрович Дикий NTUU "Kyiv polytechnic institute" Peremohy Ave, 37, Kyiv, Ukraine, 03056, Ukraine
  • Андрій Сергійович Соломаха NTUU "Kyiv polytechnic institute" Peremohy Ave, 37, Kyiv, Ukraine, 03056, Ukraine
  • Валерій Георгієвич Петренко NTUU "Kyiv polytechnic institute" Peremohy Ave, 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14856

Keywords:

evaporative air cooling, mathematical model, gas turbine plant, heat and mass transfer, diameter of a droplet

Abstract

Capacity of a gas turbine power plant strongly depends on the ambient temperature, making it profitable in many cases to cool air supplying water in the air stream. The article identifies the key provisions and presents the equations that describe the process of evaporation of water droplets in the air stream. The model is based on commonly known and chacked dependences of Nu = f (Re, Pr); Sh = f (Re, Sc). The developed system of equations allows finding the parameters of humid air, depending on the time of a process. In particular, it is possible to calculate the evaporation of a droplet in limited space and to determine time required for complete saturation of the air. This permits to use the above equations to determine the optimal initial diameter of a droplet and the required distance from the injection system of cooling water to the input of the gas turbine engine, which would provide evaporative cooling with the best effect.

Author Biographies

Микола Олександрович Дикий, NTUU "Kyiv polytechnic institute" Peremohy Ave, 37, Kyiv, Ukraine, 03056

Doctor of technical sciences

Department of theoretical and industrial heat engineering

Андрій Сергійович Соломаха, NTUU "Kyiv polytechnic institute" Peremohy Ave, 37, Kyiv, Ukraine, 03056

Junior researcher

Department of theoretical and industrial heat engineering

Валерій Георгієвич Петренко, NTUU "Kyiv polytechnic institute" Peremohy Ave, 37, Kyiv, Ukraine, 03056

Candidate of technical science

Department of theoretical and industrial heat engineering

References

  1. Walsh P. P. Gas turbine performance [Текст] / P. P. Walsh., P. Fletcher. – Blackwell Science, 2004. – 645 p.
  2. Giampaolo A. Gas turbine handbook: principles and practices [Текст] / A. Giampaolo. – The Fiarmont Press, INC, 2006. – 437 p.
  3. Holmberg M. Turbines in the Mist [Текст] / M. Holmberg, D. Herbig, S. Shilinski // Power plant technology. – 2000. – July/August. – p.17-19.
  4. Cataldi G. Influence of high fogging systems on gas turbine engine operation and performance [Текст] / G. Cataldi, H. Güntner, C. Matz, J. Hoffmann, A. Nemet // J. Eng. Gas Turbines Power. – 2006. – Vol.128. – p.135-144.
  5. Фукс Н. А. Испарение и рост капель в газовой среде [Текст] / Н. А. Фукс – Москва, 1958. – 91 с.
  6. Holterman H. J. Kinetics and evaporation of water drops in air [Текст] / H. J. Holterman // IMAG report. – 2003. – №12. – Wageningen UR. – 67 pp.
  7. Хоблер Т. Теплопередача и теплообменники [Текст] / Т. Хоблер. – Ленинград, 1961. – 820 с.
  8. The CRC Handbook of Chemistry and Physics [Текст] / editor-in-chief David R. Lide. – 2007. – 88th Edition. – 2640 p.
  9. Гладков В. А. Вентиляторные градирни [Текст] / В. А. Гладков, Ю. И. Арефьев, В. С. Пономаренко. – М.: «Стройиздат», 1976. – 216 с.
  10. Wexler A. Vapor pressure equation for water in the range 0 to 100°C [Текст] / A. Wexler, L. Greenspan // Journal of research of the Notional Bureau of Standards - A. Physics and Chemistry. – 1971. – Vol. 75A. – №3. – p.213-245.
  11. Walsh P.P., Fletcher P. (2004) Gas turbine performance. Blackwell Science, 645 p.
  12. Giampaolo A. (2006) Gas turbine handbook: principles and practices, The Fiarmont Press, INC, 437 p.
  13. Holmberg M., Herbig D., Shilinski S. (2000) Turbines in the Mist, Power plant technology, July/August, p.17-19.
  14. Cataldi G., Güntner H., Matz C., Hoffmann J., Nemet A. (2006) Influence of high fogging systems on gas turbine engine operation and performance, J. Eng. Gas Turbines Power, Vol.128, p.135-144.
  15. Fuks N.A. (1958) Evaporation and water drops growth in gas surroundings [Isparenie i rost kapel v gazovoy srede], Moscow, 91 p.
  16. Holterman H.J. (2003) Kinetics and evaporation of water drops in air, IMAG report №2003-12, Wageningen UR, 67 pp.
  17. Hobler T. (1961) Heat transfer and heat exchangers [Teploperedacha i teploobmenniki], Leningrad, 820 p.
  18. The CRC Handbook of Chemistry and Physics [editor-in-chief D. R. Lide] (2007), 88th Edition, 2640 p.
  19. Gladkov V.A. and others. (1976) Mechanical-draft towers [Ventilyatornie gradirni] Мoscow, 216 p.
  20. Wexler А., Greenspan L. (1971) Vapor pressure equation for water in the range 0 to 100°C, Journal of research of the Notional Bureau of Standards - A. Physics and Chemistry, Vol. 75A, №3, р.213-245.

Published

2013-06-19

How to Cite

Дикий, М. О., Соломаха, А. С., & Петренко, В. Г. (2013). Mathematical model of water droplets evaporation in air stream. Eastern-European Journal of Enterprise Technologies, 3(10(63), 17–20. https://doi.org/10.15587/1729-4061.2013.14856

Issue

Section

Applied information technology and management systems in the industry