Research of adaptation of car owner portal interactive services based on adaptive algorithms

Authors

  • Татьяна Борисовна Шатовская Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine
  • Дмитрий Сергеевич Негурица Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14858

Keywords:

adaptive algorithms, adaptive systems, interactive service, criteria of effectiveness

Abstract

The article studies the use of adaptive algorithms in interactive services of the portal of car owners and presents the theoretical results of this study. The main objective of the study is to develop an adaptive algorithm that changes the interactive services of the portal, based on the activity of a particular user. Taking into account the trends in the development of services in the current market, a set of services renews to attract potential customers and retain existing ones. With the increase of services, the structure of the portal complicates and thus its efficiency decreases. The end user will spend more time for searching and getting the desired service that degrade its value. Complex transitions will not attract new customers, and cause the loss of existing ones. The article analyzes the adaptive algorithms, the indexes of quality of adaptation, the elements of the environment for adapting algorithm, criteria for adaptation effectiveness were determined and a generalized scheme of adapting algorithm was proposed. The proposed algorithm permits to adapt the modules of the portal for a particular user, thus saving time and providing the significant information. The results of the study were tested in the form of a software module in Java language and integrated into the portal of car owners

Author Biographies

Татьяна Борисовна Шатовская, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Associate professor

Department of Software Engineering

Дмитрий Сергеевич Негурица, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Postgraduate

Department of Software Engineering

References

  1. Шинкаренко, В.И. Потенциальные возможности адаптации алгоритмов [Текст] / В.И. Шинкаренко, Е.Г. Васецкий, Н.Н. Пятковский // Искусственный интеллект. – 2011. – №4 – c. 232-242.
  2. Теслер Г.С. Новая кибернетика [Текст] / Г.С. Теслер. – К. : Логос, 2004. – 404 с.
  3. Ходаков, В. Е. Пользовательский адаптивный интерфейс: задачи исследования и построения [Текст] / В. Е. Ходаков, Д. В. Ходаков // Восточно-Европейский журнал передовых технологий. – 2004. – №8 – c. 20-29.
  4. Vijaykumar, V.R. Modified Adaptive Filtering Algorithm for Noise Cancellation in Speech Signals [Текст] / V.R. Vijaykumar, P.T. Vanathi, P. Kanagasabapathy // Electronics and Electrical Engineering. – 2007. – № 2(74). – p. 17-20.
  5. Louban, R. Image processing of edge and surface defects [Текст] / R. Louban. – Berlin: Springer Series in Materials Science, 2009. – p. 168.
  6. Herrera, F. Adaptation of genetic Algorithm parameters based on fuzzy logic controllers [Текст] / F. Herrera, M. Lozano // Genetic Algorithms and Soft Computing. – 1996. - № 8. – p. 95-125.
  7. Estivill-Castro, V. A survey of adaptive sorting algorithms [Текст] / V. Estvill-Castro, D. Wood // ACM Computing Surveys. – 1992. – Vol. 24 Issue 4. – p. 441-476.
  8. TDoA based UGV Localization using Adaptive Kalman Filter Algorithm [Электронный ресурс]. – Режим доступа: http://www.sersc.org/journals/IJCA/vol2_no1/1.pdf - 12.04.2013.
  9. Feo, M. IMMJPDA versus MHT and Kalman filter with NN correlation: performance comparison [Текст] / M. Feo M., A. Graziano, R. Miglioli // IEE Proc. Radar, Sonar and Navigation. – 1997. – Vol. 144,No 2. – p. 49–56.
  10. Kim, S-J. STAP for GPS Receiver Synchronization [Текст] / S-J. Kim, R.A. Iltis // IEEE Trans. Aerospaceand Electronic Systems. – 2004. – Vol. 40, No1. – p. 132–144
  11. Shynkarenko, V. (2011). The Potential for Algorithm Adaptation. Dnepropetrovsk, USSR: Shtychniy Intellect, 4, 232-242.
  12. Tesler, G. (2004) A new cybernetics. – Kiyv, Logos
  13. Hodakov, V., Hodakov, D. (2004). The user adaptive interface: research and bulding tasks. EEJET, 8, 20-29.
  14. Vijaykumar, V., Vanathi, P., Kanagasabapathy, P. (2007). Modified Adaptive Filtering Algorithm for Noise Cancellation in Speech Signals. Electronics and Electrical Engineering, 2, 17-20.
  15. Louban, R. (2009). Image processing of edge and surface defects. Berlin: Springer Series in Materials Science, 168.
  16. Herrera, F., Lozano, M. (1996). Adaptation of genetic Algorithm parameters based on fuzzy logic controllers. Genetic Algorithms and Soft Computing, 8, 95-125.
  17. Estivill-Castro, V., Wood, D. (1992). A survey of adaptive sorting algorithms. ACM Computing Surveys, 4, 441-476.
  18. TDoA based UGV Localization using Adaptive Kalman Filter Algorithm [Электронный ресурс]. – Режим доступа: http://www.sersc.org/journals/IJCA/vol2_no1/1.pdf - 12.04.2013.
  19. Feo, M., Graziano, A., Miglioli, R. (1997). IMMJPDA versus MHT and Kalman filter with NN correlation: performance comparison. IEE Proc. Radar, Sonar and Navigation, 2, 49–56.
  20. Kim, S-J., Iltis, R. (2004). STAP for GPS Receiver Synchronization. IEEE Trans. Aerospaceand Electronic Systems, 1, 132–144

Published

2013-06-19

How to Cite

Шатовская, Т. Б., & Негурица, Д. С. (2013). Research of adaptation of car owner portal interactive services based on adaptive algorithms. Eastern-European Journal of Enterprise Technologies, 3(10(63), 25–28. https://doi.org/10.15587/1729-4061.2013.14858

Issue

Section

Applied information technology and management systems in the industry