Adaptation of SST turbulence model for a flat plate film cooling simulation

Authors

  • В. Ю. Петельчиц Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42а, Oktyabrsy Pr., Mykolayiv, 54018, Ukraine, Ukraine
  • А. А. Халатов Design engineer, Heat transfer and hydraulic calculations sector Turbine department, Ukraine
  • Д. Н. Письменный Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42а, Oktyabrsy Pr., Mykolayiv, 54018, Ukraine, Ukraine
  • Ю. Я. Дашевский Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42а, Oktyabrsy Pr., Mykolayiv, 54018, Ukraine, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14874

Keywords:

cooled blade, film cooling, numerical modeling, SST turbulence model, heat transfer

Abstract

This paper presents results of numerical simulations of flat plate film cooling carried out with the use of commercial code ANSYS CFX in comparison with experimental data. In this study single row of cylindrical holes configuration with relative pitch t/d = 3 and at blowing ratios m = 0.5; 1.0; and 1.4 was reviewed. It was shown that standard SST turbulence model (with constant values by default) cannot provide film cooling effectiveness simulation results agreement with experimental data with allowable accuracy at m > 0.5. Adaptation of SST turbulence model by means of a1 constant and turbulent Prandtl number correction enabled to improve accuracy of film cooling numerical simulations. The effect of the adaptation model on the heat transfer and pressure drop calculation results was considered as well.

Author Biographies

В. Ю. Петельчиц, Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42а, Oktyabrsy Pr., Mykolayiv, 54018, Ukraine

Design engineer,

Heat transfer and hydraulic calculations sector

Turbine department

А. А. Халатов, Design engineer, Heat transfer and hydraulic calculations sector Turbine department

ScD, academician of National Academy of Sciences ofUkraine

Head of Department

Д. Н. Письменный, Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42а, Oktyabrsy Pr., Mykolayiv, 54018, Ukraine

PhD, Leading design engineer, heat transfer and hydraulic calculations sector

Turbine department

Ю. Я. Дашевский, Gas Turbine Research & Production Complex «Zorya»-«Mashproekt» 42а, Oktyabrsy Pr., Mykolayiv, 54018, Ukraine

PhD, Head of heat transfer and hydraulic calculations sector

Turbine department

References

  1. Lee K. Numerical analysis of film-cooling performance and optimization for a novel shaped film-cooling hole / K. Lee, S. Kim, K. Kim. // ASME Paper №GT2012-68529. – 2012. – 11 p.
  2. Harrison K. Comparison of RANS turbulence models for prediction of film cooling performance / K. Harrison, D. Bogard // ASME Paper №GT2008-51423. – 2008. – 10 p.
  3. Mathew S. Evaluation of CFD predictions using thermal field measurements on a simulated film cooled turbine blade leading edge / S. Mathew, S. Ravelli, D. Bogard // ASME Paper №GT2011-46619. – 2011. – 10 p.
  4. Смирнов П. Е. Численное моделирование трехмерного течения и теплообмена в условиях, типичных для организации пленочного охлаждения: автореф. диссертации на соискание ученой степени кандидата физико-математических наук: спец-ть 01.02.05 – «Механика жидкости, газа и плазмы» / Павел Евгеньевич Смирнов; Санкт-Петербургский государственный университет. 2005г. 18 с.
  5. Baldauf S. Correlation of film cooling effectiveness from thermographic measurements at engine like conditions / S. Baldauf, M. Scheurlen. // ASME Paper №GT2002-30180. – 2002. – 14 p.
  6. Heat transfer predictions using advanced two-equation turbulence models [электронный ресурс] / W. Vieser, T. Esch, F. Menter. – режим доступа: http://www.software.aeat.com/cfx.html. – название с экрана.
  7. Liu C. Effect of turbulent Prandtl number on the computation of film-cooling effectiveness / C. Liu, Н. Zhu, J. Bai // International journal of Heat and Mass Transfer №51 – 2008 г. с. 8-18.
  8. Белов И.А. Моделирование турбулентных течений / И.А. Белов, С.А. Исаев // Санкт-Петербург 2001 г. – 109 с.
  9. Lee, K., Kim, S., Kim, K. (2012). Numerical analysis of film-cooling performance and optimization for a novel shaped film-cooling hole. ASME Paper №GT2012-68529, 11.
  10. Harrison, K., Bogard, D. (2008). Comparison of RANS turbulence models for prediction of film cooling performance. ASME Paper №GT2008-51423, 10.
  11. Mathew, S., Ravelli, S. , Bogard, D. (2011). Evaluation of CFD predictions using thermal field measurements on a simulated film cooled turbine blade leading edge. ASME Paper №GT2011-46619, 10.
  12. Smirnov, P. (2005). Numerical simulation of 3D flow and heat transfer at film cooling like conditions: PhD thesis abstract. Saint Petersburg State University, 18.
  13. Baldauf, S., Scheurlen, M. (2002). Correlation of film cooling effectiveness from thermographic measurements at engine like conditions. ASME Paper №GT2002-30180, 14.
  14. Vieser, W., Esch, T., Menter, F. Heat transfer predictions using advanced two-equation turbulence models. http://www.software.aeat.com/cfx.html.
  15. Liu, C., Zhu, Н., Bai, J. (2008 ). Effect of turbulent Prandtl number on the computation of film-cooling effectiveness. International journal of Heat and Mass Transfer №51, 8-18.
  16. Belov, I., Isaev, S. (2001). Turbulent flows modeling . Saint Petersburg, 109.

Published

2013-06-19

How to Cite

Петельчиц, В. Ю., Халатов, А. А., Письменный, Д. Н., & Дашевский, Ю. Я. (2013). Adaptation of SST turbulence model for a flat plate film cooling simulation. Eastern-European Journal of Enterprise Technologies, 3(12(63), 25–29. https://doi.org/10.15587/1729-4061.2013.14874

Issue

Section

Modern technologies in the gas-turbine