Comparison of different methods of heft transfer enhancement on the cylindrical surfaces different methods of hes

Authors

  • Г. В. Коваленко Институт технической теплофизики НАН Украины ул. Желябова, 2а, г. Киев, Украина, 03057, Ukraine
  • А. Ж. Мейрис Институт технической теплофизики НАН Украины ул. Желябова, 2а, г. Киев, Украина, 03057, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14882

Keywords:

heat transfer, flow resistance, heat transfer augmentation, cylindrical surfaces, thermal-hydraulic efficiency

Abstract

The assessment of thermal-hydraulic performance of certain methods of heat transfer augmentation under cross flowing by air of cylinders of different configurations was done. The comparison was made in respect of the quotient of the Nusselt number, which characterizes the heat exchange surface with intensifiers, the Nusselt number corresponding to a smooth circular cylinder, to the quotient of the corresponding Euler numbers. The results of experimental studies of the following heat transfer surfaces were considered:

1. Bundles of circular cylinders with alternating along the cylinder equal portions (length 15 mm) with different diameters (27mm and 19.6mm);

2. Circular cylinder with a protrusion with a relative height of 0.005 and 0.02;

3. Circular cylinders with asymmetric dimples with relative depth of -0.024.

4. Elliptical cylinder with dimensions of cross-section axis of 58.3 mm and 30mm.

5. Circular cylinders with diameters of 23 mm with spiral fins with height of 10 mm and pitch of 5 mm.

The advantage of forming the cylinders by asymmetrical dimples was shown.

Author Biographies

Г. В. Коваленко, Институт технической теплофизики НАН Украины ул. Желябова, 2а, г. Киев, Украина, 03057

Старший научный сотрудник

А. Ж. Мейрис, Институт технической теплофизики НАН Украины ул. Желябова, 2а, г. Киев, Украина, 03057

Инженер второй категории

References

  1. Шевченко В. І., Півень Л. З. Енергетика України: який шлях обрати, щоб вижити? Київ.– Видавничий центр «Просвіта». 1999. 186 с.
  2. Спицын В. Е., Боцула А. Л., Чобенко В. Н. Соломонюк Д. Н. Высокоэффективная газотурбинная установка для ГПА// Вестник Национального технического университета «ХПИ». – Харьков: НТУ ХПИ – 2008- № 35, с. 8-11.
  3. Шлихтинг Г. Теория пограничного слоя. Издательство «Наука». Москва.-1969.-742 с.
  4. Жукаускас А., Жюгжда И. Теплоотдача цилиндра в поперечном потоке жидкости. – Вильнюс: «Мокслас», 1979, – 240 с.
  5. Коваленко Г. В. Теплоотдача и гидравлическое сопротивление трубчатых поверхностей с цилиндрическими лунками при поперечном обтекании в однорядных пучках// Промышленная теплотехника – 1998. –Т. 20, №3.- С. 65-70.
  6. Kovalenko G. V., Khalatov A. A. Fluid Flow and Heat Transfer Features at a Cross-Flow of Dimpled Tubes in a Confined Space// GT2002-38155 Proceeding of ASME Turbo Expo 2003 June 16-19 2003, 2003, Atlanta, Georgia, USA.
  7. Халатов А. А., Коваленко Г. В. Теплогидравлическая эффективность круговых цилиндров с выступами и углублениями при поперечном обтекании// Промышленная
  8. теплотехника. Т. 30 . № 1 , 2008 . С. 10 - 15.
  9. Fage A., Warsap J. H. The Effects of Turbulence and Surface Roughness on the Drag of Circular Cylinders// ARC RM1283.- 1930.– P. 36- 47.
  10. Bearman P. W., Harvey J. K. Control of Circular Cylinder Flow by the Use of Dimples// AIAA JOURNAL Vol. 31, No. 10, October 1993.- Pp. 1753-1756.
  11. Халатов А.А., Онищенко В.Н., Борисов И. И. Аналогия переноса теплоты и количества движения в каналах с поверхностными генераторами вихрей. Киев: Доклады НАН Украины. − 2007. − № 6. − С. 70 – 75.
  12. Анисин А. А. Повышение энергетической эффективности пучков гладких труб и профилированных каналов для газожидкостных теплообменных аппаратов энергетических установок. Автореферат диссертации на соискание ученой степени д. т. н. Санкт-Петербург: 2009.– 42 с.
  13. Юдин В. Ф. Теплообмен поперечно-оребренных труб. Ленинград: «Машиностроение». – 1982.– 189 с.
  14. Shevchenko, V.І., Pіven', L.Z. (1999). Energetika Ukraїni: jakij shljah obrati, shhob vizhiti?. Vidavnichij centr «Prosvіta», 186.
  15. Spicyn, V.E., Bocula, A.L., Chobenko, V.N. Solomonjuk, D.N. (2008). Vysokojeffektivnaja gazoturbinnaja ustanovka dlja GPA. Vestnik Nacional'nogo tehnicheskogo universiteta «HPI», # 35, 8-11.
  16. Shlihting, G. (1969). Teorija pogranichnogo sloja. Izdatel'stvo «Nauka», 742.
  17. Zhukauskas, A., Zhjugzhda, I. (1979). Teplootdacha cilindra v poperechnom potoke zhidkosti. Vil'njus, 240.
  18. Kovalenko, G.V. (1998). Teplootdacha i gidravlicheskoe soprotivlenie trubchatyh poverhnostej s cilindricheskimi lunkami pri poperechnom obtekanii v odnorjadnyh puchkah. Promyshlennaja teplotehnika, Vol. 20, #3, 65-70.
  19. Kovalenko, G.V., Khalatov, A.A. (2003 ). Fluid Flow and Heat Transfer Features at a Cross-Flow of Dimpled Tubes in a Confined Space. GT2002-38155 Proceeding of ASME Turbo Expo, Atlanta, Georgia, USA.
  20. Halatov, A.A., Kovalenko, G.V. (2008). Teplogidravlicheskaja jeffektivnost' krugovyh cilindrov s vystupami i uglublenijami pri poperechnom obtekanii. Promyshlennaja teplotehnika, Vol. 30, # 1, 10-15.
  21. Fage, A., Warsap, J. H. (1930). The Effects of Turbulence and Surface Roughness on the Drag of Circular Cylinders. ARC RM1283, 36- 47.
  22. Bearman, P.W., Harvey, J.K. (1993). Control of Circular Cylinder Flow by the Use of Dimples. AIAA JOURNAL, Vol. 31, #. 10, 1753-1756.
  23. Halatov, A.A., Onishhenko, V.N., Borisov, I.I. (2007). Analogija perenosa teploty i kolichestva dvizhenija v kanalah s poverhnostnymi generatorami vihrej. Doklady NAN Ukrainy, # 6, 70 – 75.
  24. Anisin, A.A. (2009). Povyshenie jenergeticheskoj jeffektivnosti puchkov gladkih trub i profilirovannyh kanalov dlja gazozhidkostnyh teploobmennyh apparatov jenergeticheskih ustanovok. Avtoreferat dissertacii na soiskanie uchenoj stepeni d. t. n. Sankt-Peterburg, 42.
  25. Judin, V.F. (1982). Teploobmen poperechno-orebrennyh trub. «Mashinostroenie», 189.

Published

2013-06-19

How to Cite

Коваленко, Г. В., & Мейрис, А. Ж. (2013). Comparison of different methods of heft transfer enhancement on the cylindrical surfaces different methods of hes. Eastern-European Journal of Enterprise Technologies, 3(12(63), 58–60. https://doi.org/10.15587/1729-4061.2013.14882

Issue

Section

Modern technologies in the gas-turbine