Analysis of the developed quantitative method for automatic attribution of scientific and technical text content written in Ukrainian
DOI:
https://doi.org/10.15587/1729-4061.2018.149596Keywords:
NLP, content monitoring, stop words, content analysis, statistical linguistic analysis, quantitative linguisticsAbstract
A formal approach was proposed to implement text content attribution. The study was conducted with Ukrainian scientific and technical texts. The results of application of the designed algorithms of automatic attribution of the text content based on the NLP and stylemetry methods were analyzed. Prospects and features of application of stylemetry information technologies for attribution of the text content were considered. Quantitative content analysis of scientific and technical text content takes advantage of content monitoring and text content analysis based on NLP, Web-Mining and stylemetry methods to identify the multitude of authors whose talking style is similar to that of the analyzed text fragment. This narrows the range of search for further use in the stylemetry methods to determine the degree of belonging of the analyzed text to a particular author.
Decomposition of the attribution method was carried out based on analysis of such talking coefficients as lexical diversity, degree (measure) of syntactic complexity, talking coherence, indexes of exclusivity and concentration of the text. At the same time, author's style parameters such as the number of words in a certain text, the total number of words of this text, the number of sentences, the number of prepositions, the number of conjunctions, the number of words with occurrence frequency 1, the number of words with occurrence frequency 10 or more were analyzed. Further experimental study requires testing of the proposed method in identifying keywords of texts of other categories: scientific humanitarian, artistic, journalistic, etc.
References
- Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
- Lytvyn, V., Vysotska, V., Uhryn, D., Hrendus, M., Naum, O. (2018). Analysis of statistical methods for stable combinations determination of keywords identification. Eastern-European Journal of Enterprise Technologies, 2 (2 (92)), 23–37. doi: https://doi.org/10.15587/1729-4061.2018.126009
- Lytvyn, V., Vysotska, V., Pukach, P., Bobyk, I., Uhryn, D. (2017). Development of a method for the recognition of author’s style in the Ukrainian language texts based on linguometry, stylemetry and glottochronology. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 10–19. doi: https://doi.org/10.15587/1729-4061.2017.107512
- Lytvyn, V., Pukach, P., Bobyk, І., Vysotska, V. (2016). The method of formation of the status of personality understanding based on the content analysis. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 4–12. doi: ttps://doi.org/10.15587/1729-4061.2016.77174
- Lytvyn, V., Vysotska, V., Pukach, P., Vovk, M., Ugryn, D. (2017). Method of functioning of intelligent agents, designed to solve action planning problems based on ontological approach. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.103630
- Khomytska, I., Teslyuk, V. (2016). Specifics of phonostatistical structure of the scientific style in English style system. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589887
- Khomytska, I., Teslyuk, V. (2016). The Method of Statistical Analysis of the Scientific, Colloquial, Belles-Lettres and Newspaper Styles on the Phonological Level. Advances in Intelligent Systems and Computing. Vol. 512. Springer, 149–163. doi: https://doi.org/10.1007/978-3-319-45991-2_10
- Buk, S. (2008). Osnovy statystychnoi linhvistyky. Lviv, 124.
- Bol'shakova, E., Klyshinskiy, E., Lande, D., Noskov, A., Peskova, O., Yagunova, E. (2011). Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i komp'yuternaya lingvistika. Moscow: MIEM, 272.
- Anisimov, A., Marchenko, A. (2002). Sistema obrabotki tekstov na estestvennom yazyke. Iskusstvenniy intellekt, 4, 157–163.
- Perebyinis, V. (2000). Matematychna linhvistyka. Ukrainska mova. Kyiv, 287–302.
- Perebyinis, V. (2013). Statystychni metody dlia linhvistiv. Vinnytsia, 176.
- Braslavskiy, P. I. Intellektual'nye informacionnye sistemy. Available at: http://www.kansas.ru/ai2006/
- Lande, D., Zhyhalo, V. (2008). Pidkhid do rishennia problem poshuku dvomovnoho plahiatu. Problemy informatyzatsii ta upravlinnia, 2 (24), 125–129.
- Varfolomeev, A. (2000). Psihosemantika slova i lingvostatistika teksta. Kaliningrad, 37.
- Victana. Available at: http://victana.lviv.ua/nlp/linhvometriia
- Sushko, S., Fomychova, L., Barsukov, Ye. (2010). Chastoty povtoriuvanosti bukv i bihram u vidkrytykh tekstakh ukrainskoiu movoiu. Ukrainian Information Security Research Journal, 12 (3 (48)). doi: https://doi.org/10.18372/2410-7840.12.1968
- Kognitivnaya stilometriya: k postanovke problemy. Available at: http://www.manekin.narod.ru/hist/styl.htm
- Kocherhan, M. (2005). Vstup do movoznavstva. Kyiv, 368.
- Vysotska, V. (2016). Linguistic analysis of textual commercial content for information resources processing. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452160
- Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
- Meshcheryakov, R. V., Vasyukov, N. S. (2005). Modeli opredeleniya avtorstva teksta. Izmereniya, avtomatizaciya i modelirovanie v promyshlennosti i nauchnyh issledovaniyah, 25–29.
- Morozov, N. A. Lingvisticheskie spektry. Available at: http://www.textology.ru/library/book.aspx?bookId=1&textId=3
- Mobasher, B. (2007). Data mining for web personalization. The adaptive web, 90–135. doi: https://doi.org/10.1007/978-3-540-72079-9_3
- Dinucă, C. E., Ciobanu, D. (2012). Web Content Mining. Annals of the University of Petroşani. Economics, 12 (1), 85–92.
- Xu, G., Zhang, Y., Li, L. (2011). Web content mining. Web Mining and Social Networking, 71–87. doi: https://doi.org/10.1007/978-1-4419-7735-9_4
- Kanishcheva, O., Vysotska, V., Chyrun, L., Gozhyj, A. (2017). Method of Integration and Content Management of the Information Resources Network. Advances in Intelligent Systems and Computing. Vol. 689. Springer, 204–216. doi: https://doi.org/10.1007/978-3-319-70581-1_14
- Su, J., Vysotska, V., Sachenko, A., Lytvyn, V., Burov, Y. (2017). Information resources processing using linguistic analysis of textual content. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095038
- Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2017). The risk management modelling in multi project environment. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098730
- Korobchinsky, M., Chyrun, L., Chyrun, L., Vysotska, V. (2017). Peculiarities of content forming and analysis in internet newspaper covering music news. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098735
- Naum, O., Chyrun, L., Vysotska, V., Kanishcheva, O. (2017). Intellectual system design for content formation. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098753
- Lytvyn, V., Vysotska, V., Burov, Y., Veres, O., Rishnyak, I. (2017). The Contextual Search Method Based on Domain Thesaurus. Advances in Intelligent Systems and Computing. Vol. 689. Springer, 310–319. doi: https://doi.org/10.1007/978-3-319-70581-1_22
- Marchenko, O. (2006). Modeliuvannia semantychnoho kontekstu pry analizi tekstiv na pryrodniy movi. Visnyk Kyivskoho universytetu, 3, 230–235.
- Jivani, A. G. (2011). A Comparative Study of Stemming Algorithms. Int. J. Comp. Tech. Appl., 2 (6), 1930–1938.
- Mishler, A., Crabb, E. S., Paletz, S., Hefright, B., Golonka, E. (2015). Using Structural Topic Modeling to Detect Events and Cluster Twitter Users in the Ukrainian Crisis. Communications in Computer and Information Science. Vol. 528. Springer, 639–644. doi: https://doi.org/10.1007/978-3-319-21380-4_108
- Rodionova, E. (2008). Metody atribucii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
- Bubleinyk, L. (2000). Osoblyvosti khudozhnoho movlennia. Lutsk, 179.
- Kowalska, K., Cai, D., Wade, S. (2012). Sentiment Analysis of Polish Texts. International Journal of Computer and Communication Engineering, 1 (1), 39–42. doi: https://doi.org/10.7763/ijcce.2012.v1.12
- Kotsyba, N. (2009). The current state of work on the Polish–Ukrainian Parallel Corpus (PolUKR). Organization and Development of Digital Lexical Resources, 55–60.
- Rashkevych, Y., Peleshko, D., Vynokurova, O., Izonin, I., Lotoshynska, N. (2017). Single-frame image super-resolution based on singular square matrix operator. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2017.8100390
- Tkachenko, R., Tkachenko, P., Izonin, I., Tsymbal, Y. (2018). Learning-based image scaling using neural-like structure of geometric transformation paradigm. Studies in Computational Intelligence. Vol. 730. Springer, 537–565. doi: https://doi.org/10.1007/978-3-319-63754-9_25
- Vysotska, V., Rishnyak, I., Chyryn, L. (2007). Analysis and Evaluation of Risks in Electronic Commerce. 2007 9th International Conference – The Experience of Designing and Applications of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2007.4297570
- Vysotska, V., Chyrun, L., Chyrun, L. (2016). Information technology of processing information resources in electronic content commerce systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589909
- Vysotska, V., Chyrun, L., Chyrun, L. (2016). The commercial content digest formation and distributional process. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589902
- Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2016). Content linguistic analysis methods for textual documents classification. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589903
- Lytvyn, V., Vysotska, V. (2015). Designing architecture of electronic content commerce system. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325446
- Vysotska, V., Chyrun, L. (2015). Analysis features of information resources processing. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325448
- Vasyl, L., Victoria, V., Dmytro, D., Roman, H., Zoriana, R. (2017). Application of sentence parsing for determining keywords in Ukrainian texts. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098797
- Maksymiv, O., Rak, T., Peleshko, D. (2017). Video-based Flame Detection using LBP-based Descriptor: Influences of Classifiers Variety on Detection Efficiency. International Journal of Intelligent Systems and Applications, 9 (2), 42–48. doi: https://doi.org/10.5815/ijisa.2017.02.06
- Peleshko, D., Rak, T., Izonin, I. (2016). Image Superresolution via Divergence Matrix and Automatic Detection of Crossover. International Journal of Intelligent Systems and Applications, 8 (12), 1–8. doi: https://doi.org/10.5815/ijisa.2016.12.01
- Bazylyk, O., Taradaha, P., Nadobko, O., Chyrun, L., Shestakevych, T. (2012). The results of software complex OPTAN use for modeling and optimization of standard engineering processes of printed circuit boards manufacturing. 2012 11th International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET), 107–108.
- Bondariev, A., Kiselychnyk, M., Nadobko, O., Nedostup, L., Chyrun, L., Shestakevych, T. (2012). The software complex development for modeling and optimizing of processes of radio-engineering equipment quality providing at the stage of manufacture. TCSET’2012, 159.
- Riznyk, V. (2017). Multi-modular Optimum Coding Systems Based on Remarkable Geometric Properties of Space. Advances in Intelligent Systems and Computing. Vol. 512. Springer, 129–148. doi: https://doi.org/10.1007/978-3-319-45991-2_9
- Teslyuk, V., Beregovskyi, V., Denysyuk, P., Teslyuk, T., Lozynskyi, A. (2018). Development and Implementation of the Technical Accident Prevention Subsystem for the Smart Home System. International Journal of Intelligent Systems and Applications, 10 (1), 1–8. doi: https://doi.org/10.5815/ijisa.2018.01.01
- Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325440
- Pasichnyk, V., Shestakevych, T. (2017). The model of data analysis of the psychophysiological survey results. Advances in Intelligent Systems and Computing. Vol. 512. Springer, 271–281. doi: https://doi.org/10.1007/978-3-319-45991-2_18
- Zhezhnych, P., Markiv, O. (2018). Linguistic Comparison Quality Evaluation of Web-Site Content with Tourism Documentation Objects. Advances in Intelligent Systems and Computing. Vol. 689. Springer, 656–667. doi: https://doi.org/10.1007/978-3-319-70581-1_45
- Chernukha, O., Bilushchak, Y. (2016). Mathematical modeling of random concentration field and its second moments in a semispace with erlangian disrtibution of layered inclusions. Task Quarterly, 20 (3), 295–334.
- Davydov, M., Lozynska, O. (2017). Information system for translation into ukrainian sign language on mobile devices. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098734
- Davydov, M., Lozynska, O. (2018). Mathematical Method of Translation into Ukrainian Sign Language Based on Ontologies. Advances in Intelligent Systems and Computing. Vol. 689. Springer, 89–100. doi: https://doi.org/10.1007/978-3-319-70581-1_7
- Davydov, M., Lozynska, O. (2016). Linguistic models of assistive computer technologies for cognition and communication. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589898
- Mykich, K., Burov, Y. (2016). Uncertainty in situational awareness systems. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452165
- Mykich, K., Burov, Y. (2017). Algebraic Framework for Knowledge Processing in Systems with Situational Awareness. Advances in Intelligent Systems and Computing. Vol. 512. Springer, 217–227. doi: https://doi.org/10.1007/978-3-319-45991-2_14
- Mykich, K., Burov, Y. (2016). Research of uncertainties in situational awareness systems and methods of their processing. Eastern-European Journal of Enterprise Technologies, 1 (4 (79)), 19–27. doi: https://doi.org/10.15587/1729-4061.2016.60828
- Mykich, K., Burov, Y. (2016). Algebraic model for knowledge representation in situational awareness systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589896
- Kravets, P. (2010). The control agent with fuzzy logic. Perspective Technologies and Methods in MEMS Design, MEMSTECH'2010 – Proceedings of the 6th International Conference. Lviv, 40–41.
- Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2018). On the Asymptotic Methods of the Mathematical Models of Strongly Nonlinear Physical Systems. Advances in Intelligent Systems and Computing. Vol. 689. Springer, 421–433. doi: https://doi.org/10.1007/978-3-319-70581-1_30
- Kravets, P. (2007). The Game Method for Orthonormal Systems Construction. 2007 9th International Conference – The Experience of Designing and Applications of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2007.4297555
- Kravets, P. (2016). Game Model of Dragonfly Animat Self-Learning. Perspective Technologies and Methods in MEMS Design (MEMSTECH 2016): Proc. of XII-th Int. Conf. Lviv: Lviv Politechnic Publishing House, 195–201.
- Vysotska, V., Fernandes, V. B., Emmerich, M. (2018). Web content support method in electronic business systems. Proceedings of the 2nd International Conference on Computational Linguistics and Intelligent Systems. Vol. I: Main Conference. Lviv, 20–41. Available at: http://ceur-ws.org/Vol-2136/10000020.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vasyl Lytvyn, Victoria Vysotska, Petro Pukach, Zinovii Nytrebych, Ihor Demkiv, Andriy Senyk, Oksana Malanchuk, Svitlana Sachenko, Roman Kovalchuk, Nadiia Huzyk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.