Obtaining, studying the properties, and application of zirconium(IV) oxymethanesulfonate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150771

Keywords:

methane sulfonic acid, methane sulfonate, zirconium (IV) oxymethanesulfonate, complex compound, nanocrystalline powders, zirconium oxide, surface films

Abstract

The author has investigated the process to obtain zirconium (IV) oxymethanesulfonate via the interaction between methane sulfonic acid (CH3SO3H) (MSA) and zirconium (IV) oxocarbonate (ZrOCO3.nH2O), and explored its basic physical-chemical and technological properties. The research was undertaken to address the lack of data on the chemistry of such a class of organic compounds as zirconium (IV), as well as to examine their possible application in modern materials science.

The methods of element, X-ray phase, thermal, and infrared analyses have confirmed that the product of interaction between zirconium (IV) oxocarbonate (ZrOCO3.nH2O) and methane sulfonic acid is zirconium (IV) oxymethanesulfonate with the composition ZrO(CH3SO3)2.4H2O.

It has been established that the synthesized zirconium (IV) oxymethanesulfonate is a white crystalline powder, which dissolves well in water while is weakly soluble in ethanol and isopropyl alcohol. It absorbs moisture in the open air. It thermally decomposes in the temperature range of 390‒410 оС, forming a low-temperature cubic zirconium dioxide modification that, at temperatures above 750 °C, consistently passes into the monoclinic structure of zirconium dioxide. At the zirconium (IV) oxymethanesulfonate thermolysis there form the nanodispersed powders of zirconium dioxide whose size of primary particles is 20‒50 nm, which, under the action of dispersion forces, agglomerate into aggregates of 200–400 nm. The specific surface of powders, determined based on a BET procedure, is 32 m2/g. It has been shown that the aqueous-alcohol solutions of ZrO(CH3SO3)2.4H2O actively interact with solid surfaces thereby forming hyperfine near-the-surface polymerized films, from which, when treated thermally, the surface coatings are formed from zirconium dioxide. Thus, new data have been acquired on the chemistry of complex compounds of zirconium(IV). This paper shows promising application of zirconium (IV) oxymethanesulfonate for the needs of modern materials science

Author Biography

Victor Vereschak, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Technology of Inorganic Substances and Ecology

References

  1. Wincewicz, K., Cooper, J. (2005). Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 140 (2), 280–296. doi: https://doi.org/10.1016/j.jpowsour.2004.08.032
  2. Vasylyev, O. D., Brodnikovskyi, Y. M., Brychevskyi, M. M. et. al. (2018). From Powder to Power: Ukrainian Way. SF Journal of Material and Chemical Engineering, 1. Available at: https://scienceforecastoa.com/Articles/SJMCE-V1-E1-1001.pdf
  3. Puzyrev, I. S., Alyabyshev, A. V., Lipilin, A. S., Ivanov, V. V., Yatluk, Yu. G. (2009). Sintez poliolatov cirkonila s ih posleduyushchim prevrashcheniem v nanorazmernyy dioksid cirkoniya. Izvestiya AN. Ser.: Himiya, 6, 1078–1085.
  4. Collins, D. E., Bowman, K. J. (1998). Influence of atmosphere on crystallization of zirconia from a zirconium alkoxide. Journal of Materials Research, 13 (05), 1230–1237. doi: https://doi.org/10.1557/jmr.1998.0175
  5. Yoldas, B. E. (1977). Preparation of glasses and ceramics from metal-organic compounds. Journal of Materials Science, 12 (6), 1203–1208. doi: https://doi.org/10.1007/bf02426858
  6. Gernon, M. D., Wu, M., Buszta, T., Janney, P. (1999). Environmental benefits of methanesulfonic acid. Green Chemistry, 1 (3), 127–140. doi: https://doi.org/10.1039/a900157c
  7. Tuszhinskiy, V. Dzh. (1990). Svoystva metansul'fokisloty i ee primenenie v elektrohimicheskih sistemah. Elektrohimiya, 26 (2), 249–251.
  8. Kapoor, R., Wadhawan, P., Kapoor, P. (1987). Preparation, properties, and characterization of methanesulfonato complexes of arsenic(III), antimony (III), and bismuth(III). Canadian Journal of Chemistry, 65 (6), 1195–1199. doi: https://doi.org/10.1139/v87-200
  9. Wang, R., Li, R., Jiang, H., Gong, H., Bi, Y. (2017). Crystal structure, thermal decomposition mechanism and catalytic performance of hexaaquaaluminum methanesulfonate. Journal of Coordination Chemistry, 70 (8), 1327–1338. doi: https://doi.org/10.1080/00958972.2017.1287907
  10. Trella, T., Frank, W. (2012). Hexaaquaaluminium(III) tris(methanesulfonate). Acta Crystallographica Section E Structure Reports Online, 68 (8), m1136–m1137. doi: https://doi.org/10.1107/s1600536812033235
  11. Preda, A. M., Kitschke, P., Rüffer, T., Lang, H., Mehring, M. (2016). Synthesis and Characterization of the Germanium Sulfonate Ge(CH3SO3)2- a 3D Coordination Network Solid. Zeitschrift Für Anorganische Und Allgemeine Chemie, 642 (6), 467–471. doi: https://doi.org/10.1002/zaac.201600023
  12. Vereshchak, V. G. (2015). Metansulfonaty perspektyvni organichni precursory dlia otrymannia nanodyspersnykh oksydnykh poroshkovykh materialiv. Zbirnyk materialiv VII Mizhnarodnoiyi naukovo-praktychnoiyi konferentsiyi “Suchasni problemy technologiyi neorganichnykh rechovyn ta resursozberezhennia”. Dnipropetrovsk, 52.
  13. Vereshchak, V. H., Sorochkina, K. O., Vlieiev, D. V. (2018). Metansulfonaty yak perspektyvni orhanichni spoluky dlia oderzhannia funktsionalnykh oksydnykh nanomaterialiv. XX Ukrainska konf. z neorh. khimiyi. Dnipro, 183.
  14. Givan, A., Loewenschuss, A., Nielsen, C. J. (2005). Infrared spectrum and ab initio calculations of matrix isolated methanesulfonic acid species and its 1:1 water complex. Journal of Molecular Structure, 748 (1-3), 77–90. doi: https://doi.org/10.1016/j.molstruc.2005.03.015

Downloads

Published

2018-12-12

How to Cite

Vereschak, V. (2018). Obtaining, studying the properties, and application of zirconium(IV) oxymethanesulfonate. Eastern-European Journal of Enterprise Technologies, 6(6 (96), 14–19. https://doi.org/10.15587/1729-4061.2018.150771

Issue

Section

Technology organic and inorganic substances