The influence of the pack decarburizing process with Pinctada maxima shell powder agent on the properties of high carbon steel

Authors

  • Sujita Darmo Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145 University of Mataram Jalan Majapahit, 62, Mataram, Nusa Tenggara Barat, Indonesia, 83125, Indonesia https://orcid.org/0000-0002-4516-3554
  • Rudy Soenoko Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0002-0537-4189
  • Eko Siswanto Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia
  • Teguh Dwi Widodo Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0002-7005-7315

DOI:

https://doi.org/10.15587/1729-4061.2019.153762

Keywords:

steel AISI 420, Pinctada maxima shell powder, pack decarburizing, diffusion process, surface hardness number, carbon layer thickness, impact energy

Abstract

In the present study, ductility enhancement of high carbon steel AISI 420 was conducted by pack decarburizing method to improve mechanical properties of this steel. This specimen was placed in a rectangular box containing pinctada maxima shell powder (PMSP) mixed with the carburizing agent with different percentage variations and heat treated in an oxygen atmosphere at different temperatures and soaking times. Phase analysis results indicated that the pack decarburizing process at a temperature of 900 °C, for soaking time 3 hours and an additional 30 % PMSP in the carburizing agent causing the martensit microstructure, the surface hardness number and thickness of carbon layer decreased but the impact energy of high carbon steel AISI 420 increased. The surface hardness number, carbon layer thickness each respectively decreased by 63 % and 60 %, but impact energy or impact strength increased by 33 %. This phenomenon indicates that the pack decarburizing treatment causes carbon diffusion from the surface of the specimens to the carburizing agent or reverse carbon diffusion occurs, because the concentration of carbon in the carburizing agent is higher than the surface of the specimen. The addition of PMSP in the carburizing agent increases the occurrence of carbon diffusion from the surface of specimens to the carburizing agent or reverse carbon diffusion occurs, because differences in concentration and influence of PMSP contains elements of Ca which function as catalysts or energizers. The results showthat the pack decarburizing process with an additional PMSP in the carburizing agent accelerates the diffusion of carbon atoms out the surface of the specimens (reverse carbon diffusion process), thus decreasing the thickness of the surface carbon layer, surface hardness number and increasing the impact energy

Author Biographies

Sujita Darmo, Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145 University of Mataram Jalan Majapahit, 62, Mataram, Nusa Tenggara Barat, Indonesia, 83125

Postgraduate Student

Department of Mechanical Engineering

Lecturer

Department of Mechanical Engineering

Rudy Soenoko, Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Technical Sciences, Professor

Department of Mechanical Engineering

Eko Siswanto, Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Technical Sciences, Associate Professor

Department of Mechanical Engineering

Teguh Dwi Widodo, Brawijaya University Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

PhD, Senior Lecturer

Department of Mechanical Engineering

References

  1. AISI 420 High-Carbon steel Din X20Cr13 W-Nr. 1.4021 JIS SUS420JI Sheet Plate. Available at: http://www.otaisteel.com/aisi-420-high-carbon-steel-din-x20cr13-w-nr-1-4021-jis-sus420ji-sheet-plate/
  2. Johansson, B., Nordberg, H., Thullen, J. M. Properties of High Strength Steels. International Compressor Engineering Conference. Paper 474. Available at: https://docs.lib.purdue.edu/icec/474/
  3. Stainless Steel: Tables of Technical Properties. Available at: http://www.worldstainless.org/Files/issf/non-image-files/PDF/Euro_Inox/Tables_TechnicalProperties_EN.pdf
  4. Properties and Applications of Materials. Available at: https://nptel.ac.in/courses/113106032/16
  5. García Molleja, J., Milanese, M., Piccoli, M., Moroso, R., Niedbalski, J., Nosei, L. et. al. (2013). Stability of expanded austenite, generated by ion carburizing and ion nitriding of AISI 316L SS, under high temperature and high energy pulsed ion beam irradiation. Surface and Coatings Technology, 218, 142–151. doi: https://doi.org/10.1016/j.surfcoat.2012.12.043
  6. Wei, Y., Zurecki, Z., Sisson, R. D. (2015). Optimization of processing conditions in plasma activated nitrogen–hydrocarbon carburizing. Surface and Coatings Technology, 272, 190–197. doi: https://doi.org/10.1016/j.surfcoat.2015.04.006
  7. Morita, T., Hirano, Y., Asakura, K., Kumakiri, T., Ikenaga, M., Kagaya, C. (2012). Effects of plasma carburizing and DLC coating on friction-wear characteristics, mechanical properties and fatigue strength of stainless steel. Materials Science and Engineering: A, 558, 349–355. doi: https://doi.org/10.1016/j.msea.2012.08.011
  8. Ren, F. Z., Ren, J. Z., Wei, S. Z., Volinsky, A. A., Wang, Y. F. (2014). Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection during spheroidising. International Heat Treatment and Surface Engineering, 8 (2), 76–79. doi: https://doi.org/10.1179/1749514814z.000000000103
  9. Chen, Z., Zhou, T., Zhao, R., Zhang, H., Lu, S., Yang, W., Zhou, H. (2015). Improved fatigue wear resistance of gray cast iron by localized laser carburizing. Materials Science and Engineering: A, 644, 1–9. doi: https://doi.org/10.1016/j.msea.2015.07.046
  10. Oldani, C. R. (1996). Decarburization and grain growth kinetics during the annealing of electrical steels. Scripta Materialia, 35 (11), 1253–1257. doi: https://doi.org/10.1016/1359-6462(96)00309-0
  11. Ren, F. Z., Ren, J. Z., Wei, S. Z., Volinsky, A. A., Wang, Y. F. (2014). Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection during spheroidising. International Heat Treatment and Surface Engineering, 8 (2), 76–79. doi: https://doi.org/10.1179/1749514814z.000000000103
  12. Zhao, F., Zhang, C. L., Liu, Y. Z. (2016). Ferrite Decarburization of High Silicon Spring Steel in Three Temperature Ranges. Archives of Metallurgy and Materials, 61 (3), 1715–1722. doi: https://doi.org/10.1515/amm-2016-0252
  13. Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. IJRMET, 4 (2), 92–95.
  14. Vander Voort, G. F. (2015). Understanding the forces behind decarburization is the first step toward minimizing its detrimental effects. Advanced Materials & Processes, 22–27. Available at: https://www.asminternational.org/c/portal/pdf/download?articleId=23559195&groupId=10192
  15. Farre, B., Brunelle, A., Laprévote, O., Cuif, J.-P., Williams, C. T., Dauphin, Y. (2011). Shell layers of the black-lip pearl oyster Pinctada margaritifera: Matching microstructure and composition. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159 (3), 131–139. doi: https://doi.org/10.1016/j.cbpb.2011.03.001

Downloads

Published

2019-02-19

How to Cite

Darmo, S., Soenoko, R., Siswanto, E., & Widodo, T. D. (2019). The influence of the pack decarburizing process with Pinctada maxima shell powder agent on the properties of high carbon steel. Eastern-European Journal of Enterprise Technologies, 1(12 (97), 6–13. https://doi.org/10.15587/1729-4061.2019.153762

Issue

Section

Materials Science