Development of the method for geometric modeling of S-shaped camber line of the profile of an axial compressor blade

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.154270

Keywords:

axial compressor, blade profile, geometric modeling, camber line, natural parameterization

Abstract

The method for geometric modeling of the S-shaped camber line of the profile of an axial compressor blade, which is a compound curve formed from three sections, was developed. Each of these sections is modeled in the natural parameterization using certain laws of curvature distribution along the arc of the modeled curve. The curvature of the input section obeys the linear law and that of the other two obeys the quadratic law of distribution from the length of the proper arc. Sections are connected with ensuring the second order of smoothness which implies the equality of the values of functions, derivatives, and the curvature at the conjugation point. In contrast to existing methods, it is proposed to plot the camber line of the compressor blade profile directly in the cascade of profiles, for which the axial length, stagger angle and its chord are known. In this case, the geometric angles of flow inlet and outlet are used as source data. Giving the S-shape to the camber line of the blade profile will facilitate multi-gradient motion of working medium at the outlet of the cascade of the profile, and therefore reduce energy losses in a compressor. Based on the proposed method, we developed a software code, which, in addition to digital information on the modeled camber line of the compressor blade profile, also displays the obtained results in a graphical form on the screen of a computer monitor. The performed calculation and experimental studies proved the efficiency of the proposed method for modeling camber lines of the profiles of axial compressor blades. This method can be useful to the organizations involved in designing axial compressors for gas turbine engines

Author Biographies

Valeriy Borisenko, Mykolaiv V. O. Sukhomlynskyi National University Nikolska str., 24, Mykolaiv, Ukraine, 54030

Doctor of Technical Sciences, Professor

Department of Computer Engineering

Serhiy Ustenko, Mykolaiv V. O. Sukhomlynskyi National University Nikolska str., 24, Mykolaiv, Ukraine, 54030

Doctor of Technical Sciences, Associate Professor

Department of Computer Engineering

Iryna Ustenko, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolayiv, Ukraine, 54025

PhD, Associate Professor

Department of Automated Systems Software

References

  1. Denton, J. D., Xu, L. (2002). The Effects of Lean and Sweep on Transonic Fan Performance. Volume 5: Turbo Expo 2002, Parts A and B. doi: https://doi.org/10.1115/gt2002-30327
  2. Biollo, R., Benini, E. (2008). Aerodynamic Behaviour of a Novel Three-Dimensional Shaped Transonic Compressor Rotor Blade. Volume 6: Turbomachinery, Parts A, B, and C. doi: https://doi.org/10.1115/gt2008-51397
  3. Gostelou, Dzh. (1987). Aerodinamika reshetok turbomashin. Moscow: Mir, 385.
  4. Liu, H., Liu, B., Li, L., Jiang, H. (2003). Effect of Leading-Edge Geometry on Separation Bubble on a Compressor Blade. Volume 6: Turbo Expo 2003, Parts A and B. doi: https://doi.org/10.1115/gt2003-38217
  5. Zanger (1983). Ispol'zovanie metodov optimizacii pri proektirovanii kompressorov s upravlyaemoy lokal'noy diffuzornost'yu mezhlopatochnyh kanalov. Tr. amer. obshch. inzh.-mekh. Ser.: Energeticheskie mashiny i ustanovki, 105 (2), 14–21.
  6. Beknev, V. S., Vasilenko, S. E., Sorokaletov, M. Yu. et. al. (1997). Issledovanie kompressornyh reshetok s upravlyaemoy formoy sredney linii profilya. Teploenergetika, 4, 38–42.
  7. Shelkovsky, M. Yu. (2013). Aerodynamic optimization method of compressor blade vanes. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 8, 108–115.
  8. Vinogradov, L. V. (2009). A compressor blade profile. Vestnik RUDN. Seriya: Inzhenernye issledovaniya Vestnik RUDN. Seriya: Inzhenernye issledovaniya, 2, 87–91.
  9. Frost, G. R., Hearsey, R. M., Wennerstrom, A. J. (1972). A computer program for the specification of axial compressor airfoils. Aerospace Research Laboratories, 172. doi: https://doi.org/10.21236/ad0756879
  10. Panchal, S., Mayavanshi, V. (2017). Experimental study of flow through compressor Cascade. Case Studies in Thermal Engineering, 10, 234–243. doi: https://doi.org/10.1016/j.csite.2017.05.002
  11. Giesecke, D., Bullent, M., Friedrichs, J., Stark, U. (2018). Optimization of high subsonic, high Reynolds number axial compressor airfoil sections for increased operating range. Proceedings of Global Power and Propulsion Society Forum 18. Montreal, 9.
  12. Shelkovskiy, M. Yu. (2012). Parametricheskoe issledovanie gazodinamicheskih harakteristik kompressornyh reshetok. Problemy mashinostroeniya, 15 (3-4), 27–36.
  13. Melashich, S. V., Bolotova, N. V. (2013). Parametricheskoe opisanie formy lopatok kompressornyh vencov aviacionnyh gazoturbinnyh dvigateley. Tekhnicheskaya mekhanika, 3, 42–49.
  14. Benini, E. (2010). Advances in aerodynamic design of gas turbines compressors. Gas Turbines. doi: https://doi.org/10.5772/10205
  15. Grushin, M. A. (2010). Approksimaciya profiley lopatok kompressora s pomoshch'yu krivyh Bez'e. Nauka i Obrazovanie, 7. Available at: http://technomag.edu.ru/doc/147491.html
  16. Salunke, N. P., Channiwala, S. A., Juned, A. R. A. (2014). Design optimization of an axial flow compressor for industrial gas turbine. International Journal of Research in Engineering and Technology, 03 (05), 458–464. doi: https://doi.org/10.15623/ijret.2014.0305084
  17. Briasco, G., Bruna, D., Cravero, C. (2008). A NURBS-Based Optimization Tool for Axial Compressor Cascades at Design and Off-Design Conditions. Volume 6: Turbomachinery, Parts A, B, and C. doi: https://doi.org/10.1115/gt2008-50622
  18. Ghaly, W. S., Mengistu, T. T. (2003). Optimal Geometric Representation of Turbomachinery Cascades Using Nurbs. Inverse Problems in Engineering, 11 (5), 359–373. doi: https://doi.org/10.1080/1068276031000086778
  19. Borysenko, V. D., Ustenko, S. A., Ustenko, I. V. (2018). Heometrychne modeliuvannia kryvykh liniy i poverkhon u naturalniy parametryzatsiyi. Mykolaiv: MNU, 220.
  20. Hooke, R., Jeeves, T. A. (1961). ''Direct Search'' Solution of Numerical and Statistical Problems. Journal of the ACM, 8 (2), 212–229. doi: https://doi.org/10.1145/321062.321069
  21. Romanovskyi, H. F., Vashchylenko, M. V., Sedko, M. P. (2008). Osnovy proektuvannia kompresoriv sudnovykh HTD. Mykolaiv: NUK, 292.

Downloads

Published

2019-01-14

How to Cite

Borisenko, V., Ustenko, S., & Ustenko, I. (2019). Development of the method for geometric modeling of S-shaped camber line of the profile of an axial compressor blade. Eastern-European Journal of Enterprise Technologies, 1(1), 16–23. https://doi.org/10.15587/1729-4061.2019.154270

Issue

Section

Engineering technological systems