Analysis and selection of the parametric profile of a powerplant engine for a light trainer aircraft

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.154310

Keywords:

trainer aircraft, life cycle, flight-technical characteristics, turboprop engine

Abstract

The relevance of this study is predetermined by the improvement to the fuel efficiency of an aircraft and, as a consequence, by the reduced cost of the life cycle of an aircraft engine, which is part of a power assembly at the training aircraft the type of DART-450. We have theoretically substantiated the flight-technical and economic characteristics of a modern light aircraft for training flying personnel. Underlying the research methods is a set of parameters, characteristics and indicators, which generally reflect the technical-economic perfection of engine in the powerplant of the technical system «powerplant ‒ airframe» at a light training aircraft.

The scientific novelty of this research is in the formation of a new parametric shape of a turboprop engine for the powerplant of a light training aircraft the type of DART-450, taking into consideration the modeling of the predefined flight cycle of an aircraft and the life cycle of the engine.

Numerical study has established that the maximum flight range of aircraft with different engines at the same takeoff weight is largely determined by a fuel reserve, rather than the efficiency of fuel consumption. Therefore, an engine with the lowest capacity has the advantage in all characteristics except for a takeoff distance, which is the shortest for an aircraft with the engine of maximum power.

The results have substantiated that in order to perform tasks related to training flight personnel it is appropriate to install the engine AI-450SR, which has the lowest life cycle cost. It is obvious that a given aircraft with the installed engine will have the lowest cost per flight hour. However, to perform reconnaissance and strike missions at an aircraft the type of DART-450, it is advisable to install the engine AI-450SR. To perform only the strike missions at an aircraft the type of DART-450, it is expedient to install the engine MS-500V-S, which has more power than the considered motors

Author Biographies

Vasiliy Loginov, National Aerospace University Kharkiv Aviation Institute Chkalov str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Senior Researcher

Department of Aircraft Engine Design

Yevgeniy Ukrainets, Ivan Kozhedub Kharkiv National University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Design and Strength of Aircraft and Engines

Igor Kravchenko, State Enterprise "Ivchenko-Progress" Ivanova str., 2, Zaporizhia, Ukraine, 69068

Doctor of Technical Sciences, Assistant Professor, Director

Аlexandr Yelansky, State Enterprise "Ivchenko-Progress" Ivanova str., 2, Zaporizhia, Ukraine, 69068

PhD

Department of Advanced Development and Gas Dynamic Calculations

References

  1. Mialytsa, A. K. (2010). Razrabotka avanproekta samoleta. Kharkiv: Nats. aэrokosm. un-t “KhAY”, 233.
  2. Skibin, V. A. (2010). Raboty vedushchih aviadvigatelestroitel'nyh kompaniy v obespechenii sozdaniya perspektivnyh aviacionnyh dvigateley (analiticheskiy obzor). Moscow: CIAM, 678.
  3. Mieloszyk, J., Goetzendorf-Grabowski, T. (2017). Introduction of full flight dynamic stability constraints in aircraft multidisciplinary optimization. Aerospace Science and Technology, 68, 252–260. doi: https://doi.org/10.1016/j.ast.2017.05.024
  4. Sforza, P. M. (2017). Propulsion Principles and Engine Classification. Theory of Aerospace Propulsion, 1–52. doi: https://doi.org/10.1016/b978-0-12-809326-9.00001-4
  5. Donateo, T., Spedicato, L. (2017). Fuel economy of hybrid electric flight. Applied Energy, 206, 723–738. doi: https://doi.org/10.1016/j.apenergy.2017.08.229
  6. Tereshchenko, Yu. M. (2009). Intehratsiya aviatsiynykh sylovykh ustanovok i litalnykh aparativ. Kyiv, 344.
  7. Loginov, V. V. (2016). Metodologicheskie osnovy formirovaniya parametricheskogo oblika silovoy ustanovki perspektivnogo uchebno-boevogo samoleta. Kharkiv: HUVS im. Ivana Kozheduba, 294.
  8. Min, G., Jianliang, A., Zhiwen, L., Juan, D., Jing, W. (2009). On Exploring Method and Software for Evaluating Effectiveness of Military Training Aircraft. Chinese Journal of Aeronautics, 22 (6), 607–611. doi: https://doi.org/10.1016/s1000-9361(08)60148-x
  9. Sánchez-Lozano, J. M., Serna, J., Dolón-Payán, A. (2015). Evaluating military training aircrafts through the combination of multi-criteria decision making processes with fuzzy logic. A case study in the Spanish Air Force Academy. Aerospace Science and Technology, 42, 58–65. doi: https://doi.org/10.1016/j.ast.2014.12.028
  10. Plioutsias, A., Karanikas, N. (2015). Using STPA in the Evaluation of Fighter Pilots Training Programs. Procedia Engineering, 128, 25–34. doi: https://doi.org/10.1016/j.proeng.2015.11.501
  11. Kontseptsiya trokhstupenevoi systemy lotnoi pidhotovky kursantiv Kharkivskoho universytetu Povitrianykh Syl imeni Ivana Kozheduba (2012). Vinnytsia: Komanduvannia PS, 10.
  12. Marketingovoe issledovanie rynka legkih samoletov, Rossiya 2009–2011 gg. Prognoz razvitiya do 2020 goda. Available at: http://www.asmarketing.ru/marketingovyie-issledovaniya/marketingovoe-issledovanie-ryinka-legkih-samoletov-v-rf-2009-2011-gg.-prognoz-razvitiya-do-2020-goda.html
  13. General Aviation Statistical Databook & 2015 Industry Outlook. Available at: https://gama.aero/wp-content/uploads/GAMA_2014_Databook_LRes-LowRes.pdf
  14. Geremes, Yu. N., Grebenikov, A. G., Gumenniy, A. M. (2010). Koncepciya sozdaniya samoleta dlya mestnyh vozdushnyh liniy. Otkrytye informacionnye i komp'yuternye integrirovannye tekhnologi, 47, 20–33.
  15. Forsayt razvitiya aviacionnoy nauki i tekhnologiy do 2030 goda i dal'neyshuyu perspektivu. 2012. Available at: http://xn--80ap5ae.xn--p1ai/
  16. Trainer Aircraft. Available at: http://www.globalsecurity.org/military/world/trainer-aircraft.htm
  17. Yang, X., Zhang, W. (2013). A faster optimization method based on support vector regression for aerodynamic problems. Advances in Space Research, 52 (6), 1008–1017. doi: https://doi.org/10.1016/j.asr.2013.05.030
  18. Florov, I. F. (1985). Metody ocenki effektivnosti primeneniya dvigateley v aviacii. Trudy CIAM, 1099.
  19. Nechaev, Yu. N. (1990). Teoriya aviacionnyh dvigateley. Moscow: VVIA im. N. E. Zhukovskogo, 878.
  20. Yugov, O. K. (1989). Osnovy integracii samoleta i dvigatelya. Moscow: Mashinostroenie, 304.
  21. Eger, S. M. (Ed.) (1983). Proektirovanie samoletov. Moscow: Mashinostroenie, 616.
  22. Torenbik, E. (1983). Proektirovanie dozvukovyh samoletov. Moscow: Mashinostroenie, 648.
  23. Kyuheman, D. (1983). Aerodinamicheskoe proektirovanie samoletov. Moscow: Mashinostroenie, 656.
  24. Della Vecchia, P., Nicolosi, F. (2014). Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft. Aerospace Science and Technology, 38, 88–104. doi: https://doi.org/10.1016/j.ast.2014.07.018
  25. Portnikov, B. A. (2007). Kriterii tekhniko-ekonomicheskoy effektivnosti aviacionnoy specializirovannoy sistemy. Vestnik Orenburgskogo gosudarstvennogo universiteta, 5, 171–180.
  26. Pornet, C., Isikveren, A. T. (2015). Conceptual design of hybrid-electric transport aircraft. Progress in Aerospace Sciences, 79, 114–135. doi: https://doi.org/10.1016/j.paerosci.2015.09.002
  27. Marinus, B. G., Poppe, J. (2015). Data and design models for military turbo-propeller aircraft. Aerospace Science and Technology, 41, 63–80. doi: https://doi.org/10.1016/j.ast.2014.12.009
  28. Wang, T.-C., Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33 (4), 870–880. doi: https://doi.org/10.1016/j.eswa.2006.07.003
  29. O’Regan, M. S., Griffin, P. C., Young, T. M. (2016). A vorticity confinement model applied to URANS and LES simulations of a wing-tip vortex in the near-field. International Journal of Heat and Fluid Flow, 61, 355–365. doi: https://doi.org/10.1016/j.ijheatfluidflow.2016.05.014
  30. Saltykov, A. S. (2012). Using of ansys cfx software for calculate the characteristics of aviation combat aircraft powerplants to increase flight safety. Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk, 14 (4 (2)), 751–757.
  31. Klochkov, V. V. (2005). Metody i programmnoe obespechenie ekonomiko-matematicheskogo modelirovaniya i optimizacii tekhnicheskogo obsluzhivaniya i remonta aviadvigateley. Moscow: MFTI, 167.
  32. Ryerson, M. S., Ge, X. (2014). The role of turboprops in China’s growing aviation system. Journal of Transport Geography, 40, 133–144. doi: https://doi.org/10.1016/j.jtrangeo.2014.03.009
  33. Yelanskyi, O. V. (2014). Evaluation of perfection an aviation combat-trainer complex at preliminary stages designing or subsequent modernization. Systemy ozbroiennia i viyskova tekhnika, 3, 33–36.
  34. Nasir, R. E. M., Kuntjoro, W., Wisnoe, W. (2014). Aerodynamic, Stability and Flying Quality Evaluation on a Small Blended Wing-body Aircraft with Canard Foreplanes. Procedia Technology, 15, 783–791. doi: https://doi.org/10.1016/j.protcy.2014.09.051
  35. Loginov, V. V. (2015). Software for forming of operational performance of engine aircraft power plant. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 9 (126), 149–152.
  36. Diamond DART-450. Available at: http://www.airframer.com/aircraft_detail.html?model=DART-450
  37. AI-450С/СD/СР Turboprop. Available at: http://ivchenko-progress.com/?portfolio=%d0%b0%d0%b8-450%d1%81
  38. MS-500V-S family engines. Available at: http://www.motorsich.com/ukr/products/aircraft/tr/ms-500v-s/

Downloads

Published

2019-01-14

How to Cite

Loginov, V., Ukrainets, Y., Kravchenko, I., & Yelansky А. (2019). Analysis and selection of the parametric profile of a powerplant engine for a light trainer aircraft. Eastern-European Journal of Enterprise Technologies, 1(1), 59–68. https://doi.org/10.15587/1729-4061.2019.154310

Issue

Section

Engineering technological systems