The use of heat circulator for flammability in mesoscale combustor
DOI:
https://doi.org/10.15587/1729-4061.2019.155347Keywords:
micro-combustor, flammability, heat recirculation, liquid fuel, micropower generatorAbstract
The mesoscale combustor is a part of the micropower electric generator. The function of the mesoscale combustor is to convert hydrocarbon to become thermal energy through combustion reaction. It is difficult to maintain the flame stability of a mesoscale combustor due to its millimetre-scale size.
This study aims to determine the performance and recognize mesoscale combustor phenomena that have stainless steel heat recirculators. This study is to test the combustion characteristics of liquid and gas fuels in meso-combustors which use heat recirculator. The heat circulator is made of stainless steel tube with an inner diameter of 3.5. The parameters observed were flammability limits, temperature distribution and flame visualization.
It is confirmed that the stainless steel heat recirculator, is useful for liquid fuel preheating and evaporating inside of mesoscale combustor. The flame of liquid fuels can be stabilized at an equivalence ratio of 0.9 to 1.25, and up to about 900 centigrade Celsius. Thus recommend for liquid fuel micropower generator. It is noted that when the heat recirculator is too close to the flame, excessive flame cooling occurs and causes the flame extinguished. The meso-combustor, which has no heat recirculator, and designed for gas fuel only, can stabilize flame at an equivalence ratio of 0.7 to 1.5. It is also confirmed that the inaccurate selection of the material of thermal recirculator risks reducing the flame stability. It is important to note that when the gas fuel exits the storage tube, there is an expansion and a decrease in temperature which can affect flammability limits
References
- Chou, S. K., Yang, W. M., Chua, K. J., Li, J., Zhang, K. L. (2011). Development of micro power generators – A review. Applied Energy, 88 (1), 1–16. doi: https://doi.org/10.1016/j.apenergy.2010.07.010
- Fan, A., Zhang, H., Wan, J. (2017). Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body. Energy, 123, 252–259. doi: https://doi.org/10.1016/j.energy.2017.02.003
- Wierzbicki, T. A., Lee, I. C., Gupta, A. K. (2014). Performance of synthetic jet fuels in a meso-scale heat recirculating combustor. Applied Energy, 118, 41–47. doi: https://doi.org/10.1016/j.apenergy.2013.12.021
- Higuchi, K., Nakano, T., Takahashi, S. (2018). Development of portable power unit with catalytic micro-combustor. Journal of Physics: Conference Series, 1052, 012058. doi: https://doi.org/10.1088/1742-6596/1052/1/012058
- E, J., Zuo, W., Liu, H., Peng, Q. (2016). Field synergy analysis of the micro-cylindrical combustor with a step. Applied Thermal Engineering, 93, 83–89. doi: https://doi.org/10.1016/j.applthermaleng.2015.09.028
- Aravind, B., Raghuram, G. K. S., Kishore, V. R., Kumar, S. (2018). Compact design of planar stepped micro combustor for portable thermoelectric power generation. Energy Conversion and Management, 156, 224–234. doi: https://doi.org/10.1016/j.enconman.2017.11.021
- Aravind, B., Khandelwal, B., Kumar, S. (2018). Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator. Applied Energy, 228, 1173–1181. doi: https://doi.org/10.1016/j.apenergy.2018.07.022
- Yang, W., Xiang, Y., Fan, A., Yao, H. (2017). Effect of the cavity depth on the combustion efficiency of lean H2/air flames in a micro combustor with dual cavities. International Journal of Hydrogen Energy, 42 (20), 14312–14320. doi: https://doi.org/10.1016/j.ijhydene.2017.03.235
- Wan, J., Zhao, H. (2017). Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels. Energy, 139, 366–379. doi: https://doi.org/10.1016/j.energy.2017.08.002
- Tang, A., Cai, T., Deng, J., Xu, Y., Pan, J. (2017). Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor. Energy Conversion and Management, 152, 65–71. doi: https://doi.org/10.1016/j.enconman.2017.09.011
- Nakamura, Y., Gao, J., Matsuoka, T. (2017). Progress in small-scale combustion. Journal of Thermal Science and Technology, 12 (1), JTST0001–JTST0001. doi: https://doi.org/10.1299/jtst.2017jtst0001
- Mustafa, K. F., Abdullah, S., Abdullah, M. Z., Sopian, K. (2017). A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renewable and Sustainable Energy Reviews, 71, 572–584. doi: https://doi.org/10.1016/j.rser.2016.12.085
- Kim, T. Y., Kim, H. K., Ku, J. W., Kwon, O. C. (2017). A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion. Applied Energy, 193, 174–181. doi: https://doi.org/10.1016/j.apenergy.2017.02.040
- Hery Soegiharto, A. F., Wardana, I. N. G., Yuliati, L., Nursasongko, M. (2017). The Role of Liquid Fuels Channel Configuration on the Combustion inside Cylindrical Mesoscale Combustor. Journal of Combustion, 2017, 1–9. doi: https://doi.org/10.1155/2017/3679679
- Gan, Y., Tong, Y., Ju, Y., Zhang, X., Li, H., Chen, X. (2017). Experimental study on electro-spraying and combustion characteristics in meso-scale combustors. Energy Conversion and Management, 131, 10–17. doi: https://doi.org/10.1016/j.enconman.2016.11.015
- Alipoor, A., Saidi, M. H. (2017). Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator. Applied Energy, 199, 382–399. doi: https://doi.org/10.1016/j.apenergy.2017.05.027
- Akhtar, S., Khan, M. N., Kurnia, J. C., Shamim, T. (2017). Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications. Applied Energy, 192, 134–145. doi: https://doi.org/10.1016/j.apenergy.2017.01.097
- Yang, W., Zhou, M., Deng, C., Huang, T., Zhou, J., Wang, Z. et. al. (2016). Experiments on n -heptane combustion with two types of catalyst layouts. Applied Thermal Engineering, 100, 325–332. doi: https://doi.org/10.1016/j.applthermaleng.2016.02.010
- Li, S., Pei, J., Liu, D., Bao, L., Li, J.-F., Wu, H., Li, L. (2016). Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering. Energy, 113, 35–43. doi: https://doi.org/10.1016/j.energy.2016.07.034
- Jiang, D., Yang, W., Tang, A. (2015). Development of a high-temperature and high-uniformity micro planar combustor for thermophotovoltaics application. Energy Conversion and Management, 103, 359–365. doi: https://doi.org/10.1016/j.enconman.2015.06.083
- Li, J., Huang, J., Yan, M., Zhao, D., Zhao, J., Wei, Z., Wang, N. (2014). Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Experimental Thermal and Fluid Science, 52, 47–58. doi: https://doi.org/10.1016/j.expthermflusci.2013.08.021
- Mikami, M., Maeda, Y., Matsui, K., Seo, T., Yuliati, L. (2013). Combustion of gaseous and liquid fuels in meso-scale tubes with wire mesh. Proceedings of the Combustion Institute, 34 (2), 3387–3394. doi: https://doi.org/10.1016/j.proci.2012.05.064
- Yuliati, L., Seo, T., Mikami, M. (2012). Liquid-fuel combustion in a narrow tube using an electrospray technique. Combustion and Flame, 159 (1), 462–464. doi: https://doi.org/10.1016/j.combustflame.2011.06.010
- Yang, W. M., Jiang, D. Y., Chou, S. K., Chua, K. J., Karthikeyan, K., An, H. (2012). Experimental study on micro modular combustor for micro-thermophotovoltaic system application. International Journal of Hydrogen Energy, 37 (12), 9576–9583. doi: https://doi.org/10.1016/j.ijhydene.2012.03.129
- Shirsat, V., Gupta, A. K. (2011). Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors. Applied Energy, 88 (12), 5069–5082. doi: https://doi.org/10.1016/j.apenergy.2011.07.019
- Chen, X., Li, J., Feng, M., Wang, N. (2018). Effects of external heating on flame stability in a micro porous combustor fuelled with heptane. Combustion Science and Technology, 191 (2), 311–324. doi: https://doi.org/10.1080/00102202.2018.1463220
- Giovannoni, V., Sharma, R. N., Raine, R. R. (2016). Premixed combustion of methane–air mixture stabilized over porous medium: A 2D numerical study. Chemical Engineering Science, 152, 591–605. doi: https://doi.org/10.1016/j.ces.2016.06.039
- Li, J., Wang, Y., Shi, J., Liu, X. (2015). Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium. Fuel, 145, 70–78. doi: https://doi.org/10.1016/j.fuel.2014.12.070
- Coutinho, J. E. A., de Lemos, M. J. S. (2012). Laminar flow with combustion in inert porous media. International Communications in Heat and Mass Transfer, 39 (7), 896–903. doi: https://doi.org/10.1016/j.icheatmasstransfer.2012.06.002
- Wang, G., Wang, F., Li, L., Zhang, G. (2013). A study of methanol steam reforming on distributed catalyst bed. International Journal of Hydrogen Energy, 38 (25), 10788–10794. doi: https://doi.org/10.1016/j.ijhydene.2013.02.061
- Bijjula, K., Vlachos, D. G. (2011). Catalytic ignition and autothermal combustion of JP-8 and its surrogates over a Pt/γ-Al2O3 catalyst. Proceedings of the Combustion Institute, 33 (2), 1801–1807. doi: https://doi.org/10.1016/j.proci.2010.05.008
- Li, Y.-H., Chen, G.-B., Hsu, H.-W., Chao, Y.-C. (2010). Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities. Chemical Engineering Journal, 160 (2), 715–722. doi: https://doi.org/10.1016/j.cej.2010.03.057
- Lee, M. J., Kim, N. I. (2010). Experiment on the effect of Pt-catalyst on the characteristics of a small heat-regenerative CH4–air premixed combustor. Applied Energy, 87 (11), 3409–3416. doi: https://doi.org/10.1016/j.apenergy.2010.04.033
- Wan, J., Zhao, H. (2018). Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels. Energy, 157, 448–459. doi: https://doi.org/10.1016/j.energy.2018.05.189
- Wan, J., Shang, C., Zhao, H. (2018). Dynamics of methane/air premixed flame in a mesoscale diverging combustor with/without a cylindrical flame holder. Fuel, 232, 659–665. doi: https://doi.org/10.1016/j.fuel.2018.06.026
- Wan, J., Shang, C., Zhao, H. (2018). Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel, 232, 591–599. doi: https://doi.org/10.1016/j.fuel.2018.06.027
- Wan, J., Fan, A., Yao, H. (2016). Effect of the length of a plate flame holder on flame blowout limit in a micro-combustor with preheating channels. Combustion and Flame, 170, 53–62. doi: https://doi.org/10.1016/j.combustflame.2016.05.015
- Wan, J., Fan, A. (2015). Effect of solid material on the blow-off limit of CH 4 /air flames in a micro combustor with a plate flame holder and preheating channels. Energy Conversion and Management, 101, 552–560. doi: https://doi.org/10.1016/j.enconman.2015.06.010
- Li, J., Huang, J., Chen, X., Zhao, D., Shi, B., Wei, Z., Wang, N. (2016). Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Applied Thermal Engineering, 109, 697–708. doi: https://doi.org/10.1016/j.applthermaleng.2016.08.085
- Yan, Y., Pan, W., Zhang, L., Tang, W., Chen, Y., Li, L. (2015). Numerical study of the geometrical parameters on CH4/air premixed combustion in heat recirculation micro-combustor. Fuel, 159, 45–51. doi: https://doi.org/10.1016/j.fuel.2015.06.069
- Lee, M. J., Cho, S. M., Choi, B. I., Kim, N. I. (2010). Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type. Applied Thermal Engineering, 30 (14-15), 2227–2235. doi: https://doi.org/10.1016/j.applthermaleng.2010.06.003
- Scarpa, A., Pirone, R., Russo, G., Vlachos, D. G. (2009). Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor. Combustion and Flame, 156 (5), 947–953. doi: https://doi.org/10.1016/j.combustflame.2008.11.005
- Chen, W.-H., Cheng, Y.-C., Hung, C.-I. (2012). Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production. International Journal of Hydrogen Energy, 37 (8), 6608–6619. doi: https://doi.org/10.1016/j.ijhydene.2012.01.054
- Zhong, B.-J., Wang, J.-H. (2010). Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors. Combustion and Flame, 157 (12), 2222–2229. doi: https://doi.org/10.1016/j.combustflame.2010.07.014
- Il Kim, N., Aizumi, S., Yokomori, T., Kato, S., Fujimori, T., Maruta, K. (2007). Development and scale effects of small Swiss-roll combustors. Proceedings of the Combustion Institute, 31 (2), 3243–3250. doi: https://doi.org/10.1016/j.proci.2006.08.077
- Kim, N., Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T., Maruta, K. (2005). Flame stabilization and emission of small Swiss-roll combustors as heaters. Combustion and Flame, 141 (3), 229–240. doi: https://doi.org/10.1016/j.combustflame.2005.01.006
- Munir, F. A., Mikami, M. (2015). A numerical study of propane-air combustion in meso-scale tube combustors with concentric rings. Journal of Thermal Science and Technology, 10 (1), JTST0008–JTST0008. doi: https://doi.org/10.1299/jtst.2015jtst0008
- Yang, W. M., Chua, K. J., Pan, J. F., Jiang, D. Y., An, H. (2014). Development of micro-thermophotovoltaic power generator with heat recuperation. Energy Conversion and Management, 78, 81–87. doi: https://doi.org/10.1016/j.enconman.2013.10.040
- Munir, F. A., Hatakeda, N., Seo, T., Mikami, M. (2014). Improvement of Combustion Stability in Narrow tubes with wire Mesh. ISTP_Fudhail_Rev4_ISTP final.
- Taywade, U. W., Deshpande, A. A., Kumar, S. (2013). Thermal performance of a micro combustor with heat recirculation. Fuel Processing Technology, 109, 179–188. doi: https://doi.org/10.1016/j.fuproc.2012.11.002
- Li, Y.-H., Chen, G.-B., Cheng, T.-S., Yeh, Y.-L., Chao, Y.-C. (2013). Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics. Energy, 61, 150–157. doi: https://doi.org/10.1016/j.energy.2013.09.003
- Jiang, D., Yang, W., Chua, K. J. (2013). Entropy generation analysis of H2/air premixed flame in micro-combustors with heat recuperation. Chemical Engineering Science, 98, 265–272. doi: https://doi.org/10.1016/j.ces.2013.05.038
- Deshpande, A. A Kumar, S. (2013). On the formation of spinning flames and combustion completeness for premixed fuel–air mixtures in stepped tube microcombustors. Applied Thermal Engineering, 51 (1-2), 91–101. doi: https://doi.org/10.1016/j.applthermaleng.2012.09.013
- Bai, B., Chen, Z., Zhang, H., Chen, S. (2013). Flame propagation in a tube with wall quenching of radicals. Combustion and Flame, 160 (12), 2810–2819. doi: https://doi.org/10.1016/j.combustflame.2013.07.008
- DuttaRoy, R., Chakravarthy, S. R., Sen, A. K. (2018). Experimental investigation of flame propagation and stabilization in a meso-combustor with sudden expansion. Experimental Thermal and Fluid Science, 90, 299–309. doi: https://doi.org/10.1016/j.expthermflusci.2017.09.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Achmad Fauzan Hery Soegiharto
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.