Development of methods for structural and logical model unification of metaknowledge for ontologies evolution managing of intelligent systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.155410

Keywords:

ontology incorporation, model context, graph labeling, metaproduction, knowledge representation, signal graph, decision support system

Abstract

The relevance of the study is due to the importance and necessity of unifying the construction and use of intelligent decision support systems for managing complex industrial facilities and systems.

The aim of the study is to substantiate the unified approach to managing knowledge bases of various configurations and develop unified mathematical models of operations on ontology elements.

The method for managing the evolution of ontologies of professional fields, based on the unification of the structural-logical model of metaknowledge representation, is proposed.

The method of unification of the structural-logical model of evolution of ontology incorporation is developed. Formal linguistic models are developed, the similarity of forms of knowledge representation and evolutionary inheritance within the general ontology incorporation are proved. For the synthesis of the model of incorporation of the evolutionary inheritance of ontologies, the subtasks of the development of models of the evolutionary inheritance of concepts, graphs and ontologies of KB levels are solved. The model provides an opportunity of a single approach to the interpretation of the interaction structures of concepts for all KB levels.

The generalized model of the signal graph of the KB structure levels is developed. The model includes the atomic concept, signal, node potential, node activity, threshold of node sensitivity to the input signal. A set of formal models of basic operations on the signal graph of the KB necessary for the interpretation and computing of knowledge forms is developed. The metarule syntax and the formal-linguistic basis are developed. Formalisms of the labeling parameter and labeling function of the KB signal graph are introduced. Labeling models are introduced into the general model of the signal graph of the KB.

Possibilities of applying the developed models of the signal graph of the knowledge base to various professional areas are investigated. It is shown that the proposed metaknowledge models do not depend on forms of representation and formalisms of professional ontologies. This allows the use of a single knowledge management mechanism in any intelligent decision support systems. The method of effective dynamic management of the structure of all KB levels and inference process depending on the input parameters of the intelligent system is proposed

Author Biographies

Ihor Kotov, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Modeling and Software

Oleksandr Suvorov, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

Senior Lecturer

Department of Automation, Computer Science and Technology

Oleksandra Serdiuk, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

Assistant

Department of Automation, Computer Science and Technology

References

  1. Bartolomey, P. I., Tashchilin, V. A. (2015). Informacionnoe obespechenie zadach elektroenergetiki. Ekaterinburg, 108.
  2. Morkun, V., Tron, V. (2014). Ore preparation multi-criteria energy-efficient automated control with considering the ecological and economic factors. Metallurgical and Mining Industry, 5, 4–7. Available at: http://www.metaljournal.com.ua/assets/Journal/1-MorkunTron.pdf
  3. Besanger, Y., Eremia, M., Voropai, N. (2013). Major Grid Blackouts: Analysis, Classification, and Prevention. Handbook of Electrical Power System Dynamics, 789–863. doi: https://doi.org/10.1002/9781118516072.ch13
  4. Smolovik, S. V. (2008). Rol' «chelovecheskogo faktora» v razvitii krupnyh sistemnyh avariy. ELEKTROENERGETIKA, 1 (1), 16–19.
  5. Avariynist na obiektakh elektroenerhetyky Ukrainy u 2005 rotsi. Haluzevyi informatsiynyi dokument (2005). Obiednannia enerhetychnykh pidpryiemstv «Haluzevyi rezervno-investytsiynyi fond rozvytku enerhetyky». Kyiv: Vydavnytstvo «Enerhiya», 102.
  6. Kalibataitė, G. (2011). The Importance of Meta-Knowledge for Business and Information Management. Social Technologies, 1 (1), 163–178.
  7. Nasrollahi, S. N., Mokhtari, H., Seyedein, M. (2011). Meta-analysis: An Approach to Synthesizing and Evaluating Research on Knowledge and Information Science. Iranian Journal of Information Processing & Management, 29 (2), 293–316.
  8. Morkun, V., Tcvirkun, S. (2014). Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry, 5, 12–15. Available at: http://www.metaljournal.com.ua/assets/Journal/3-MorkunTs.pdf
  9. Rodriguez-Rojas, L. A., Cueva-Lovelle, J. M., Tarazona-Bermudez, G. M., Montenegro-Marin, C. E. (2013). Open Data as a key factor for developing expert systems: a perspective from Spain. International Journal of Interactive Multimedia and Artificial Intelligence, 2 (2), 51. doi: https://doi.org/10.9781/ijimai.2013.226
  10. Ligeza, A. (2001). Knowledge Representation and Inference for Analysis and Design of Database and Tabular Rule-Based Systems. Computer Science, 3 (1), 13–60.
  11. Miah, S. J., Genemo, H. (2016). A Design Science Research Methodology for Expert Systems Development. Australasian Journal of Information Systems, 20. doi: https://doi.org/10.3127/ajis.v20i0.1329
  12. Morkun, V., Morkun, N., Tron, V. (2015). Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry, 5, 7–11. Available at: http://www.metaljournal.com.ua/assets/MMI_2014_6/MMI_2015_5/001-Morkun.pdf
  13. Kuznecov, O. P., Suhoverov, V. S., Shipilina, L. B. (2010). Ontologiya kak sistematizaciya nauchnyh znaniy: struktura, semantika, zadachi. Trudy konferencii «Tekhnicheskie i programmnye sredstva sistem upravleniya, kontrolya i izmereniya». Moscow: IPU RAN, 762–773.
  14. Al-Emran, M., Mezhuyev, V., Kamaludin, A., Shaalan, K. (2018). The impact of knowledge management processes on information systems: A systematic review. International Journal of Information Management, 43, 173–187. doi: https://doi.org/10.1016/j.ijinfomgt.2018.08.001
  15. Sedighi, S. M., Javidan, R. (2012). Semantic query in a relational database using a local ontology construction. South African Journal of Science, 108 (11/12). doi: https://doi.org/10.4102/sajs.v108i11/12.1107
  16. Ruy, F. B., Guizzardi, G., Falbo, R. A., Reginato, C. C., Santos, V. A. (2017). From reference ontologies to ontology patterns and back. Data & Knowledge Engineering, 109, 41–69. doi: https://doi.org/10.1016/j.datak.2017.03.004
  17. Duer, S., Wrzesień, P., Duer, R. (2017). Creating of structure of facts for the knowledge base of an expert system for wind power plant's equipment diagnosis. E3S Web of Conferences, 19, 01038. doi: https://doi.org/10.1051/e3sconf/20171901038
  18. Xamena, E., Brignole, N. B., Maguitman, A. G. (2017). A Structural Analysis of topic ontologies. Information Sciences, 421, 15–29. doi: https://doi.org/10.1016/j.ins.2017.08.081
  19. Gadomski, A. M. (1989). From Know-how to How-to- Know: An Approach to Knowledge Ordering for Specification of Complex Problems (TOGA methodology). Presented at the International Symposium on Computational Intelligence. Milan.
  20. Shabanov-Kushnarenko, Yu. P. (1984). Teoriya intellekta. Matematicheskie sredstva. Kharkiv, 144.
  21. Dudar', Z. V., Kalinichenko, O. V., Shabanov-Kushnarenko, S. Yu. (2000). About a method and problems of the theory of intellect. I. Radioelektronika i informatika, 2, 112–122.
  22. Shabanov-Kushnarenko, S. Yu., Kudhair Abed Tamer, Leschynskaya, I. A. (2013). The predicative approach to non-obvious knowledge formalization. Systemy obrobky informatsiyi, 9, 113–116.
  23. Bashmakov, A. I., Bashmakov, I. A. (2005). Intellektual'nye informacionnye tekhnologii. Moscow, 304.
  24. Genesereth, M. R., Fikes, R. E. (1992). Knowledge Interchange Format. Reference Manual. Computer Science Department, Stanford University Stanford, California, 68.
  25. Yalovec, A. L. (2011). Predstavlenie i obrabotka znaniy s tochki zreniya matematicheskogo modelirovaniya problemy i resheniya. Kyiv: Naukova dumka, 339.
  26. Gignoux, J., Chérel, G., Davies, I. D., Flint, S. R., Lateltin, E. (2017). Emergence and complex systems: The contribution of dynamic graph theory. Ecological Complexity, 31, 34–49. doi: https://doi.org/10.1016/j.ecocom.2017.02.006
  27. Wiener, G. (2016). On constructions of hypotraceable graphs. Electronic Notes in Discrete Mathematics, 54, 127–132. doi: https://doi.org/10.1016/j.endm.2016.09.023

Published

2019-03-12

How to Cite

Kotov, I., Suvorov, O., & Serdiuk, O. (2019). Development of methods for structural and logical model unification of metaknowledge for ontologies evolution managing of intelligent systems. Eastern-European Journal of Enterprise Technologies, 2(4 (98), 38–47. https://doi.org/10.15587/1729-4061.2019.155410

Issue

Section

Mathematics and Cybernetics - applied aspects