Establishment of heatexchange process regularities at inflammation of reed samples
DOI:
https://doi.org/10.15587/1729-4061.2019.156644Keywords:
fire protection of reed, flame retardant coatings, heat conduction, surface treatment, thermophysical propertiesAbstract
The conducted studies into the influence of induction period on reed inflammation have established the mechanisms of the process of heat transfer to material which makes it possible to influence this process. It was proved that these mechanisms consist in heating material to a critical temperature at which an intensive decomposition of the material occurs with release of a critical amount of combustible gases and their inflammation. This makes it possible to establish effect of fire protection and properties of roofing formulations on inhibition of the reed inflammation process. Experimental studies have confirmed that untreated reed inflames under thermal action in 58 seconds which is respectively equal to the induction period of material decomposition and flame spreads throughout the material surface which results in a complete combustion of material. Duration of the induction period extends to 587.45 s due to decomposition of flame retardants under thermal action with emission of non-combustible gases inhibiting material oxidation and significantly intensifying formation of a heat protective layer of coke on the reed surface. This leads to a growth of the coke layer thickness and inhibition of heat transfer from high temperature flame to the material. The study has made it possible to determine conditions of fire protection of reed by creating a barrier for thermal conductivity. In addition, when a flame-retardant protection coating is applied, the temperature effect manifests itself in reactions in the pre-flame region with formation of soot-like products on the surface of a natural combustible material. This gives grounds to assert that the mechanism of imparting fire protection properties to the reed by means of bloating formulations is feasible and that the proposed technological solutions have practical attractiveness. The latter, in particular, relate to determination of quantity of the polymeric component since the reed is characterized by hydrophobicity and the aqueous solution of the flame detergent flows off the surface. Thus, there are grounds to assert that the controlled fire protection of reed can be ensured through the use of a complex roofing formulation of a mixture of flame retardants and a natural polymer capable of forming a flame-retardant film on the material surfaceReferences
- Tsapko, Y., Tsapko, А. (2018). Modeling a thermal conductivity process under the action of flame on the wall of fireretardant reed. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 50–56. doi: https://doi.org/10.15587/1729-4061.2018.128316
- Tsapko, Y., Tsapko, А. (2018). Establishment of fire protective effectiveness of reed treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 4 (10 (94)), 62–68. doi: https://doi.org/10.15587/1729-4061.2018.141030
- Tsapko, J., Tsapko, А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.73542
- Tsapko, Y., Tsapko, А. (2017). Influence of dry mixtures in a coating on the effectiveness of wood protection from the action of a magnesium flame. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 55–60. doi: https://doi.org/10.15587/1729-4061.2017.111106
- Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032
- Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3). doi: https://doi.org/10.15376/biores.9.3.4924-4933
- Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572
- Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011
- Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G., Berglund, L. (2015). Oriented Clay Nanopaper from Biobased Components – Mechanisms for Superior Fire Protection Properties. ACS Applied Materials & Interfaces, 7 (10), 5847–5856. doi: https://doi.org/10.1021/am509058h
- Gillani, Q. F., Ahmad, F., Mutalib, M. I. A., Melor, P. S., Ullah, S., Arogundade, A. (2016). Effect of Dolomite Clay on Thermal Performance and Char Morphology of Expandable Graphite Based Intumescent Fire Retardant Coatings. Procedia Engineering, 148, 146–150. doi: https://doi.org/10.1016/j.proeng.2016.06.505
- Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
- Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598
- Fan, F., Xia, Z., Li, Q., Li, Z. (2013). Effects of inorganic fillers on the shear viscosity and fire retardant performance of waterborne intumescent coatings. Progress in Organic Coatings, 76 (5), 844–851. doi: https://doi.org/10.1016/j.porgcoat.2013.02.002
- Loycyanskiy, L. G. (1970). Mekhanika zhidkosti i gaza. Moscow: Nedra, 904.
- Fel'dman, L. P., Svyatniy, V. A., Kasimov, O. I. (1971). Issledovanie utechek vozduha cherez vyrabotannoe prostranstvo uchastka metodami matematicheskogo modelirovaniya. Razrabotka mestorozhdeniy poleznyh iskopaemyh, 22, 105–110.
- Perel'man, V. I. (1963). Kratkiy spravochnik himika. Moscow: Goskhimizdat, 624.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Yuriy Tsapko, Аleksii Tsapko, Olga Bondarenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.