Revealing special features of hydrodynamics in a rotor-disk film vaporizing plant

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.156649

Keywords:

rotor-disk film vaporizing plant, heat dissipation, k-ε turbulence model, forced convection, ANSYS, CFX, shear stresses

Abstract

This paper reports the generalized results of computer simulation of physical processes at a rotor-disk film evaporating plant. Optimization of the operation mode cannot be achieved without establishing patterns in the course of physical processes. We have proposed a computer model of hydrodynamics that accounts for all the features, initial and boundary conditions. The results of computer simulations make it possible to adequately assess the effectiveness of using a rotor-disk film evaporating plant (RDFVP) for the concentration of heat-labile materials. We have established patterns in the course of physical processes within a structure of RDFVP by using computer simulation of hydrodynamics in the programming environment ANSYS and applying a k-ε turbulence model. The result of simulation is the derived velocity fields of the concentrated fluid (wmax=0.413 m/s) and the gas phase (wmax=8.176 m/s), as well as the magnitude of values for shear stress τ=0.94·10-6 Pa. It was established that the gas heat-carrier is characterized by the highly-turbulent flows with maximum values for kinetic energy TKEmax=8.985·10-1 m2/s2. The reliability of results is ensured by the correctness, completeness, and adequacy of physical assumptions when stating the problem and while solving it using the computer aided design system ANSYS. It has been established that the proposed structure is an effective alternative to equipment for the concentration of solutions. The data obtained could be used when designing heat-and-mass-exchange equipment for the highly efficient dehydration of thermolabile materials

Author Biographies

Sergii Kostyk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Biotechnology and Engineering

Vladislav Shybetskyy, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Biotechnology and Engineering

Sergei Fesenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Assistant

Department of Biotechnology and Engineering

Vadym Povodzinskiy, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Biotechnology and Engineering

References

  1. Kostik, S., Obodovich, A. N. (2014). Issledovanie tekhnicheskih i teplofizicheskih harakteristik universal'nogo sushil'nogo stenda po obezvozhivaniyu termolabil'nyh materialov. Molodoy ucheniy, 4, 195–198.
  2. Sorokovaya, N. N., Snezhkin, Yu. F., Shapar', R. A., Sorokovoy, R. Ya. (2015). Sposob sushki termolabil'nyh materialov v lentochnoy sushil'noy ustanovke s primeneniem teplovogo nasosa. Naukovi pratsi ONAKhT, 2 (47), 91–97.
  3. Safin, R. R., Khakimzyanov, I. F., Mukhametzyanov, S. R. (2017). Non-volatile Facility for Vacuum Drying of Thermolabile Materials. Procedia Engineering, 206, 1063–1068. doi: https://doi.org/10.1016/j.proeng.2017.10.595
  4. Kollamaram, G., Croker, D. M., Walker, G. M., Goyanes, A., Basit, A. W., Gaisford, S. (2018). Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International Journal of Pharmaceutics, 545 (1-2), 144–152. doi: https://doi.org/10.1016/j.ijpharm.2018.04.055
  5. Souza da Silva, E., Rupert Brandão, S. C., Lopes da Silva, A., Fernandes da Silva, J. H., Duarte Coêlho, A. C., Azoubel, P. M. (2019). Ultrasound-assisted vacuum drying of nectarine. Journal of Food Engineering, 246, 119–124. doi: https://doi.org/10.1016/j.jfoodeng.2018.11.013
  6. Luo, X., Yang, Z. (2017). A new approach for estimation of total heat exchange factor in reheating furnace by solving an inverse heat conduction problem. International Journal of Heat and Mass Transfer, 112, 1062–1071. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.009
  7. Abdollahzadeh, M., Esmaeilpour, M., Vizinho, R., Younesi, A., Pàscoa, J. C. (2017). Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer. International Journal of Heat and Mass Transfer, 115, 1288–1308. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.114
  8. Zhang, C., Li, Y. (2017). Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process. Energy, 124, 565–578. doi: https://doi.org/10.1016/j.energy.2017.02.103
  9. Obodovich, A. N., Ruzhinskaya, L. I., Kostyk, S. I., Bulakh, N. M. (2016). Features of heat forced convection in a rotor-disc film evaporator. Promyshlennaya teplotekhnika, 37 (6), 22–28.
  10. Obodovich, A. N., Ruzhinskaya, L. I., Kostik, S. I. (2014). Matematicheskoe modelirovanie processa obrazovaniya pogranichnogo sloya na poverhnosti vrashchayushchegosya diska, chastichno pogruzhennogo v kul'tural'nuyu zhidkost' i obduvaemogo gazovym teplonositelem. Promyshlennaya teplotekhnika, 36 (2), 86–92.
  11. Song, J., Liu, Z., Ma, Z., Zhang, J. (2017). Experimental investigation of convective heat transfer from sewage in heat exchange pipes and the construction of a fouling resistance-based mathematical model. Energy and Buildings, 150, 412–420. doi: https://doi.org/10.1016/j.enbuild.2017.06.025
  12. Lanzafame, R., Mauro, S., Messina, M., Brusca, S. (2017). Heat Exchange Numerical Modeling of a Submarine Pipeline for Crude Oil Transport. Energy Procedia, 126, 18–25. doi: https://doi.org/10.1016/j.egypro.2017.08.048
  13. Zhao, C.-R., Zhang, Z., Jiang, P.-X., Bo, H.-L. (2017). Influence of various aspects of low Reynolds number k - ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids. Nuclear Engineering and Design, 313, 401–413. doi: https://doi.org/10.1016/j.nucengdes.2016.12.033
  14. Jafari, M., Farhadi, M., Sedighi, K. (2017). Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: An experimental and numerical approach. Applied Thermal Engineering, 124, 883–896. doi: https://doi.org/10.1016/j.applthermaleng.2017.06.095
  15. Shybetskiy, V., Semeniuk, S., Kostyk, S. (2017). Design of consrtuction and hydrodynamic modeling in a roller bioreactor with surface cultivation of cell cultures. ScienceRise, 7 (36), 53–59. doi: https://doi.org/10.15587/2313-8416.2017.107176
  16. Zakomornyi, D. M., Kutovyi, M. H., Kostyk, S. I., Povodzynskyi, V. M., Shybetskyi, V. Yu. (2016). Hydrodynamics of fermenter with multi-shaft stirrer. ScienceRise, 5 (2 (22)), 65–70. doi: https://doi.org/10.15587/2313-8416.2016.69451
  17. Kostyk, S. I., Ruzhynska, L. I., Shybetskyi, V. Yu., Revtov, O. O. (2016). Mathematical simulation of hydrodynamics of the mixing device with magnetic drive. ScienceRise, 4 (2 (21)), 27–31. doi: https://doi.org/10.15587/2313-8416.2016.67275
  18. Shi, Z., Graber, Z. T., Baumgart, T., Stone, H. A., Cohen, A. E. (2018). Cell Membranes Resist Flow. Cell, 175 (7), 1769–1779.e13. doi: https://doi.org/10.1016/j.cell.2018.09.054

Downloads

Published

2019-02-14

How to Cite

Kostyk, S., Shybetskyy, V., Fesenko, S., & Povodzinskiy, V. (2019). Revealing special features of hydrodynamics in a rotor-disk film vaporizing plant. Eastern-European Journal of Enterprise Technologies, 1(6 (97), 28–33. https://doi.org/10.15587/1729-4061.2019.156649

Issue

Section

Technology organic and inorganic substances