Modeling the process of microbial biofilm formation on stainless steel with a different surface roughness

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.160142

Keywords:

microbial adhesion, formation of biofilms, roughness of stainless-steel surface, a film formation process.

Abstract

This paper reports a study into the process of bacteria adhesion to surfaces of different roughness depending on sizes and shapes. It was determined that at the surface of stainless steel with a roughness of 2.687±0.014 µm, the film formation process in E. coli and S. aureus occurred equally over 3 to 24 hours and did not depend on the size of bacteria. This makes it possible to argue that rod-shaped and coccal bacteria freely attach themselves in the grooves of roughness, followed by the initial process related to the first stage of a biofilm formation. During sanitization, the hollows of roughness could host both the coccal and rod-shaped bacteria. At the surface of steel with a roughness of 0.95±0.092 μm the process of film formation in S. aureus occurred more intensely than in E. coli. Within 3 h of incubation, density of the formed biofilms S. aureus was 1.2 times larger compared to the biofilms E. coli. Over the following 15 hours of incubation, the biofilms S. aureus were on average 1.3 times denser. This suggests that S. aureus, due to a spherical form, can stay put in the hollows of roughness of 0.95±0.092 µm and quicker attach to the surface. At the same time, E. coli, owing to a rod-shaped shape, would attach at such a surface roughness to the hollows lengthwise only. It has been proven that at a surface roughness of 0.63±0.087 µm the intensity of the S. aureus film formation was on average 1.4 times faster than in E. coli. However, at a roughness of 0.16±0.018 μm the process of film formation occurred equally in E. coli and S. aureus, but the biofilms demonstrated lower density compared to those that formed at a roughness of 0.63±0.087 µm.

Thus, the use of equipment with a roughness of less than 0.5 µm in the dairy industry will make it possible to reduce the attachment of microorganisms to surface and to decrease contamination of dairy products

Author Biographies

Mykola Kukhtyn, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Doctor of Veterinary Sciences, Professor

Department of Food Biotechnology and Chemistry

Khrystyna Kravcheniuk, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Postgraduate student

Department of Food Biotechnology and Chemistry

Ludmila Beyko, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD, Associate Professor

Department of Food Biotechnology and Chemistry

Yulia Horiuk, State Agrarian and Engineering University in Podilya Schevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Senior Lecturer

Department of Infectious and Parasitic Diseases

Oleksandr Skliar, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

Doctor of Veterinary Sciences, Professor

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

Serhii Kernychnyi, State Agrarian and Engineering University in Podilya Schevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Associate Professor

Department of Veterinary Obstetrics, Internal Pathologic and Surgery

References

  1. Kukhtyn, M., Berhilevych, O., Kravcheniuk, K., Shynkaruk, O., Horyuk, Y., Semaniuk, N. (2017). Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 5 (11 (89)), 26–33. doi: https://doi.org/10.15587/1729-4061.2017.110488
  2. Kukhtyn, M., Berhilevych, O., Kravcheniuk, K., Shynkaruk, O., Horyuk, Y., Semaniuk, N. (2017). The influence of disinfectants on microbial biofilms of dairy equipment. EUREKA: Life Sciences, 5, 11–17. doi: https://doi.org/10.21303/2504-5695.2017.00423
  3. Shaheen, R., Svensson, B., Andersson, M. A., Christiansson, A., Salkinoja-Salonen, M. (2010). Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiology, 27 (3), 347–355. doi: https://doi.org/10.1016/j.fm.2009.11.004
  4. Council directive 93/43/EEC on the hygiene of foodstuffs (1993). Official Journal of the European Communities, No L 175/1.
  5. Whitehead, K. A., Verran, J. (2007). The effect of surface properties and application method on the retention of Pseudomonas aeruginosa on uncoated and titanium-coated stainless steel. International Biodeterioration & Biodegradation, 60 (2), 74–80. doi: https://doi.org/10.1016/j.ibiod.2006.11.009
  6. Verran, J., Packer, A., Kelly, P., Whitehead, K. A. (2010). The retention of bacteria on hygienic surfaces presenting scratches of microbial dimensions. Letters in Applied Microbiology, 50 (3), 258–263. doi: https://doi.org/10.1111/j.1472-765x.2009.02784.x
  7. Rajab, F. H., Liauw, C. M., Benson, P. S., Li, L., Whitehead, K. A. (2018). Picosecond laser treatment production of hierarchical structured stainless steel to reduce bacterial fouling. Food and Bioproducts Processing, 109, 29–40. doi: https://doi.org/10.1016/j.fbp.2018.02.009
  8. Finkel, J. S., Mitchell, A. P. (2010). Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology, 9 (2), 109–118. doi: https://doi.org/10.1038/nrmicro2475
  9. Monds, R. D., O’Toole, G. A. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology, 17 (2), 73–87. doi: https://doi.org/10.1016/j.tim.2008.11.001
  10. Zhao, K., Tseng, B. S., Beckerman, B., Jin, F., Gibiansky, M. L., Harrison, J. J. et. al. (2013). Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature, 497 (7449), 388–391. doi: https://doi.org/10.1038/nature12155
  11. Oliveira, N. M., Martinez-Garcia, E., Xavier, J., Durham, W. M., Kolter, R., Kim, W., Foster, K. R. (2015). Correction: Biofilm Formation As a Response to Ecological Competition. PLOS Biology, 13 (8), e1002232. doi: https://doi.org/10.1371/journal.pbio.1002232
  12. Monds, R. D., O’Toole, G. A. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology, 17 (2), 73–87. doi: https://doi.org/10.1016/j.tim.2008.11.001
  13. Moriarty, T. F., Poulsson, A. H. C., Rochford, E. T. J., Richards, R. G. (2011). Bacterial Adhesion and Biomaterial Surfaces. Comprehensive Biomaterials, 75–100. doi: https://doi.org/10.1016/b978-0-08-055294-1.00007-6
  14. Hoevar, M., Jenko, M., Godec, M., Drobne, D. (2014). An overviev of the influence of stainless-steel surface properties on bacterial adhesion. Materials and technology, 48 (5), 609–617.
  15. Crawford, R. J., Webb, H. K., Truong, V. K., Hasan, J., Ivanova, E. P. (2012). Surface topographical factors influencing bacterial attachment. Advances in Colloid and Interface Science, 179-182, 142–149. doi: https://doi.org/10.1016/j.cis.2012.06.015
  16. Merritt, K., An, Y. H. (2000). Factors Influencing Bacterial Adhesion. Handbook of Bacterial Adhesion, 53–72. doi: https://doi.org/10.1385/1-59259-224-4:53
  17. García, S., Trueba, A., Vega, L. M., Madariaga, E. (2016). Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser. Biofouling, 32 (10), 1185–1193. doi: https://doi.org/10.1080/08927014.2016.1241875
  18. Maruschak, P., Panin, S., Chausov, M., Bishchak, R., Polyvana, U. (2018). Effect of long-term operation on steels of main gas pipeline: Structural and mechanical degradation. Journal of King Saud University - Engineering Sciences, 30 (4), 363–367. doi: https://doi.org/10.1016/j.jksues.2016.09.002
  19. Whitehead, K. A., Verran, J. (2009). The Effect of Substratum Properties on the Survival of Attached Microorganisms on Inert Surfaces. Marine and Industrial Biofouling, 13–33. doi: https://doi.org/10.1007/978-3-540-69796-1_2
  20. An, Y. H., Dickinson, R. B., Doyle, R. J. (2000). Mechanisms of Bacterial Adhesion and Pathogenesis of Implant and Tissue Infections. Handbook of Bacterial Adhesion, 1–27. doi: https://doi.org/10.1385/1-59259-224-4:1
  21. Partington, E. (2006). Stainless Steel in the Food & Beverage Industry. Materials and Applications, 24.
  22. Jullien, C., Bénézech, T., Carpentier, B., Lebret, V., Faille, C. (2003). Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. Journal of Food Engineering, 56 (1), 77–87. doi: https://doi.org/10.1016/s0260-8774(02)00150-4
  23. Dantas, L. C. de M., Silva-Neto, J. P. da, Dantas, T. S., Naves, L. Z., das Neves, F. D., da Mota, A. S. (2016). Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate. International Journal of Dentistry, 2016, 1–6. doi: https://doi.org/10.1155/2016/8685796
  24. Whitehead, K. A., Benson, P. S., Verran, J. (2015). Developing application and detection methods for Listeria monocytogenes and fish extract on open surfaces in order to optimize cleaning protocols. Food and Bioproducts Processing, 93, 224–233. doi: https://doi.org/10.1016/j.fbp.2014.07.007
  25. Whitehead, K. A., Verran, J. (2006). The Effect of Surface Topography on the Retention of Microorganisms. Food and Bioproducts Processing, 84 (4), 253–259. doi: https://doi.org/10.1205/fbp06035
  26. Hilbert, L. R., Bagge-Ravn, D., Kold, J., Gram, L. (2003). Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. International Biodeterioration & Biodegradation, 52 (3), 175–185. doi: https://doi.org/10.1016/s0964-8305(03)00104-5
  27. Milledge, J. J. (2010). The cleanability of stainless steel used as a food contact surface: an updated short review. Food Sci. Technol., 24 (3), 18–20.
  28. Bos, R., Mei, H. C., Gold, J., Busscher, H. J. (2000). Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiology Letters, 189 (2), 311–315. doi: https://doi.org/10.1111/j.1574-6968.2000.tb09249.x
  29. Fadeeva, E., Truong, V. K., Stiesch, M., Chichkov, B. N., Crawford, R. J., Wang, J., Ivanova, E. P. (2011). Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir, 27 (6), 3012–3019. doi: https://doi.org/10.1021/la104607g
  30. Privett, B. J., Youn, J., Hong, S. A., Lee, J., Han, J., Shin, J. H., Schoenfisch, M. H. (2011). Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces. Langmuir, 27 (15), 9597–9601. doi: https://doi.org/10.1021/la201801e
  31. Dou, X.-Q., Zhang, D., Feng, C., Jiang, L. (2015). Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS Nano, 9 (11), 10664–10672. doi: https://doi.org/10.1021/acsnano.5b04231
  32. Cunha, A., Elie, A.-M., Plawinski, L., Serro, A. P., Botelho do Rego, A. M., Almeida, A. et. al. (2016). Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Applied Surface Science, 360, 485–493. doi: https://doi.org/10.1016/j.apsusc.2015.10.102
  33. Kukhtyn, M., Kravcheniuk, K., Beyko, L., Horiuk, Y., Skliar, O., Kernychnyi, S. (2019). Study of the influence of Savinase®Evity 16L enzyme on biofilms formation of staphylococcus aureus on stainless steel with different roughness. EUREKA: Life Sciences, 2, 26–32. doi: http://dx.doi.org/10.21303/2504-5695.2019.00858
  34. Vos, P., Garrity, G., Jones, D., Krieg, N. R. et. al. (Eds.) (2009). Bergey's manual of systematic bacteriology. The Firmicutes. Springer. doi: https://doi.org/10.1007/978-0-387-68489-5
  35. Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., Herman, L. (2012). Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Comprehensive Reviews in Food Science and Food Safety, 11 (2), 133–147. doi: https://doi.org/10.1111/j.1541-4337.2011.00183.x
  36. Kukhtyn, M., Vichko, O., Berhilevych, O., Horyuk, Y., Horyuk, V. (2016). Main microbiological and biological properties of microbial associations of "Lactomyces tibeticus". Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7 (6), 1266–1272.

Downloads

Published

2019-03-19

How to Cite

Kukhtyn, M., Kravcheniuk, K., Beyko, L., Horiuk, Y., Skliar, O., & Kernychnyi, S. (2019). Modeling the process of microbial biofilm formation on stainless steel with a different surface roughness. Eastern-European Journal of Enterprise Technologies, 2(11 (98), 14–21. https://doi.org/10.15587/1729-4061.2019.160142

Issue

Section

Technology and Equipment of Food Production