Electrophoretic system for express analysis of whey protein fractions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.160186

Keywords:

milk whey protein fractions, polyacrylamide gel electrophoresis, express analysis, densitometry.

Abstract

Fractional specificity of biological action and ability to form bioactive peptides, which have a positive effect on different physiological systems of the body in the processes of proteolysis and digestion, are characteristic for whey proteins. Prospects for the production and application of whey protein fractions are related to the necessity of their composition control.

The comparative analysis of the electrophoretic systems previously used for the milk protein analysis was carried out for the creation of an express analysis method of whey protein fractions. These are the anode disc electrophoresis system in the presence of sodium dodecyl sulfate, the Davis disc electrophoresis system for acidic proteins in native conditions, the system in a homogeneous polyacrylamide gel with urea. The Davis disc electrophoresis system for acidic proteins was chosen as the basis. For the adaptation of this system to the requirements of express analysis, the stacking polyacrylamide gel was removed from its composition and the concentration of the separating gel was reduced. The difference in the composition of electrode buffer and gel buffer ions was used to provide the high separation efficiency of protein fractions. This allows saving the effect of protein concentration in the whey sample on the first stages of electrophoresis. The position of the basic whey protein fractions on electrophoregrams was established with the help of homogeneous marker proteins (β-lactoglobulin and whey albumin).

Аn accessible electrophoresis system in the slabs of a homogeneous polyacrylamide gel for serial express analysis of the fractional composition of whey proteins has been proposed as a result of researches. The system allows reliable identification of four protein fractions (α-LA, β-LG, BSA and IG). Close average values and standard deviations of the content of these fractions in 15 whey samples of one milk batch, obtained by the densitometry of three electrophoregrams: β-LG (37.3±4.2, 36.5±2.8; 38.3±2.7), α-LA (15.8±1.5, 15.8±1.3, 16.4±1.1), BSA (8.2±1.1, 8.0±1.0, 9.4±1.1), IG (17.6±1.9, 17.4±1.5, 16.8±1.5) testify about good reproducibility of the method. The proposed method may be useful for the express identification of the basic whey protein fractions, which are precursors of biologically active peptides.

Author Biographies

Volodymyr Yukalo, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Doctor of Biological Sciences, Professor

Department of Food Biotechnology and Chemistry

Kateryna Datsyshyn, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Assistant

Department of Food Biotechnology and Chemistry

Liudmyla Storozh, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD

Department of Food Biotechnology and Chemistry

References

  1. Hramcov, A. G. (2011). Fenomen molochnoy syvorotki. Sankt-Peterburg: Professiya, 804.
  2. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1 (2), 177–187. doi: https://doi.org/10.1016/j.jff.2009.01.007
  3. Iukalo, A. V., Datsyshyn, K. Ye., Yukalo, V. G. (2013). Bioactive peptides of the cow milk whey proteins (Bos Taurus). Biotechnologia Acta, 6 (5), 49–61. doi: https://doi.org/10.15407/biotech6.05.049
  4. Le, T. T., Zhao, D., Larsen, L. B. (2019). Analytical Methods for Measuring or Detecting Whey Proteins. Whey Proteins, 155–184. doi: https://doi.org/10.1016/b978-0-12-812124-5.00005-9
  5. Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K. et. al. (2004). Nomenclature of the Proteins of Cows’ Milk – Sixth Revision. Journal of Dairy Science, 87 (6), 1641–1674. doi: https://doi.org/10.3168/jds.s0022-0302(04)73319-6
  6. Neelima, Sharma, R., Rajput, Y. S., Mann, B. (2013). Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Science & Technology, 93 (1), 21–43. doi: https://doi.org/10.1007/s13594-012-0095-0
  7. Le, T. T., Deeth, H. C., Larsen, L. B. (2017). Proteomics of major bovine milk proteins: Novel insights. International Dairy Journal, 67, 2–15. doi: https://doi.org/10.1016/j.idairyj.2016.11.016
  8. Marnila, P., Korhonen, H. (2011). Milk Proteins: Immunoglobulins. Encyclopedia of Dairy Sciences, 807–815. doi: https://doi.org/10.1016/b978-0-12-374407-4.00436-2
  9. Korhonen, H., Marnila, P. (2011). Milk Proteins: Lactoferrin. Encyclopedia of Dairy Sciences, 801–806. doi: https://doi.org/10.1016/b978-0-12-374407-4.00435-0
  10. Brandelli, A., Daroit, D. J., Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. doi: https://doi.org/10.1016/j.foodres.2015.01.016
  11. Athira, S., Mann, B., Saini, P., Sharma, R., Kumar, R., Singh, A. K. (2014). Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey. Journal of the Science of Food and Agriculture, 95 (14), 2908–2915. doi: https://doi.org/10.1002/jsfa.7032
  12. De Simone, C., Picariello, G., Mamone, G., Stiuso, P., Dicitore, A., Vanacore, D. et. al. (2009). Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey. Journal of Peptide Science, 15 (3), 251–258. doi: https://doi.org/10.1002/psc.1093
  13. Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., O’Mahony, J. A. (2015). Dairy Chemistry and Biochemistry. Springer, 584. doi: https://doi.org/10.1007/978-3-319-14892-2
  14. Basch, J. J., Douglas, F. W., Procino, L. G., Holsinger, V. H., Farrell, H. M. (1985). Quantitation of Caseins and Whey Proteins of Processed Milks and Whey Protein Concentrates, Application of Gel Electrophoresis, and Comparison with Harland-Ashworth Procedure. Journal of Dairy Science, 68 (1), 23–31. doi: https://doi.org/10.3168/jds.s0022-0302(85)80792-x
  15. Yukalo, A., Yukalo, V., Shynkaryk, M. (2009). Electrophoretic separation of the milk protein. Proceeding of the International Conference on Bio and Food Electrotechnologies. Compiegne, 227–231.
  16. Iukalo, А. V. (2015). Identification of protein fractions of milk cows casein complex. The Ukrainian Biochemical Journal, 87 (4), 87–91. doi: https://doi.org/10.15407/ubj87.04.087
  17. Yukalo, V. G. (2005). Obtaining of casein protein complex fractions from cow milk. Nutracos, 5, 17–19.
  18. Yukalo, V., Datsyshyn, K. (2019). Gel filtration of cow milk whey proteins. Food Science and Technology, 12 (4), 72–78. doi: https://doi.org/10.15673/fst.v12i4.1183
  19. Yukalo, V. H., Yavorskyi, B. I., Storozh, L. A., Solovodzinska, I. Ye. (2007). Kilkisnyi elektroforetychnyi analiz bilkiv kazeinovoho kompleksu. Biolohiya tvaryn, 9 (1-2), 269–272.
  20. Skalka, V. V., Savchuk, O. M., Ostapchenko, L. I. (2010). Vyvchennia riznykh form kazeinu u molotsi metodom dysk-elektroforezu. Fizyka zhyvoho, 18 (3), 36–38.
  21. Osterman, L. A. (1981). Metody issledovaniya belkov i nukleinovyh kislot: Elektroforez i ul'tracentrifugirovanie. Moscow: Nauka, 288.

Downloads

Published

2019-03-19

How to Cite

Yukalo, V., Datsyshyn, K., & Storozh, L. (2019). Electrophoretic system for express analysis of whey protein fractions. Eastern-European Journal of Enterprise Technologies, 2(11 (98), 37–44. https://doi.org/10.15587/1729-4061.2019.160186

Issue

Section

Technology and Equipment of Food Production