Analysis of efficiency of the bioinspired method for decoding algebraic convolutional codes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.160753

Keywords:

wireless telecommunication systems, convolutional codes, algebraic structure, decoding, bioinspired search

Abstract

It has been shown that convolutional codes are widely used, along with various decoding methods, to improve the reliability of information transmission in wireless telecommunication systems. The general principles of synthesis and the parameters and algebraic non-systematic convolutional codes with arbitrary coding rate and maximum achievable code distance have been shown.

The basic stages of the bioinspired method for decoding algebraic convolutional codes using a random shift mechanism have been presented. It has been shown that the essence of the presented decoding method implies applying the procedure of differential evolution with the heuristically determined parameters. In addition, this method uses information about the reliability of the adopted symbols to find the most reliable basis for the generalized generator matrix. The mechanism of random shift for the modification of the accepted sequence is additionally applied for the bioinspired search based on various most reliable bases of a generalized generator matrix.

The research results established that the bioinspired method for decoding algebraic convolutional codes ensures greater efficiency compared with the algebraic decoding method in the communication channel with additive white Gaussian noise. Depending on the parameters of the algebraic convolutional code and the necessary error coefficient, the energy gain from encoding ranges from 1.6 dB to 3 dB. It was shown that the presented bioinspired decoding method can be used for convolutional codes with a large code constraint length.

In doing so, the presented method for decoding algebraic convolutional codes is less efficient than the Viterbi decoding method and turbo codes at a sufficient number of decoding iterations

Author Biographies

Sergii Panchenko, Ukrainian State University of Railway Transport Feierbakh sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor, Rector

Department of Automation and Computer Remote Control Train Traffic

Sergii Prykhodko, Ukrainian State University of Railway Transport Feierbakh sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor, Vice-Rector

Department of Transport Communication

Sergii Kozelkov, Educational and Research Institute of Telecommunications and Informatization State University of Telecommunications Solomianska str., 7, Kyiv, Ukraine, 03110

Doctor of Technical Sciences, Professor, Director

Mykola Shtompel, Ukrainian State University of Railway Transport Feierbakh sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Associate Professor

Department of Transport Communication

Viktor Kosenko, State Enterprise «Kharkіv Scientific-Research Institute of Mechanical Engineering Technology» Krivokonivska str., 30, Kharkiv, Ukraine, 61016

Doctor of Technical Sciences, Associate Professor, Director

Oleksandr Shefer, Poltava National Technical Yuri Kondratyuk University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

Doctor of Technical Sciences, Associate Professor

Department of Automation and Electric Drive

Olha Dunaievska, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Computer Mathematics and Data Analysis

References

  1. Johannesson, R., Zigangirov, K. Sh. (Eds.) (2015). Fundamentals of convolutional coding. John Wiley & Sons, 668. doi: https://doi.org/10.1002/9781119098799
  2. Ryan, W., Lin, S. (2009). Channel codes: Classical and modern. Cambridge University Press, 692. doi: https://doi.org/10.1017/cbo9780511803253
  3. Piret, P. (1976). Structure and constructions of cyclic convolutional codes. IEEE Transactions on Information Theory, 22 (2), 147–155. doi: https://doi.org/10.1109/tit.1976.1055531
  4. Roos, C. (1979). On the structure of convolutional and cyclic convolutional codes. IEEE Transactions on Information Theory, 25 (6), 676–683. doi: https://doi.org/10.1109/tit.1979.1056108
  5. Gluesing-Luerssen, H., Schmale, W. (2004). On Cyclic Convolutional Codes. Acta Applicandae Mathematicae, 82 (2), 183–237. doi: https://doi.org/10.1023/b:acap.0000027534.61242.09
  6. Gluesing-Luerssen, H., Schmale, W. (2006). On Doubly-Cyclic Convolutional Codes. Applicable Algebra in Engineering, Communication and Computing, 17 (2), 151–170. doi: https://doi.org/10.1007/s00200-006-0014-9
  7. Gomez-Torrecillas, J., Lobillo, F. J., Navarro, G. (2016). A New Perspective of Cyclicity in Convolutional Codes. IEEE Transactions on Information Theory, 62 (5), 2702–2706. doi: https://doi.org/10.1109/tit.2016.2538264
  8. Rosenthal, J., York, F. V. (1999). BCH convolutional codes. IEEE Transactions on Information Theory, 45 (6), 1833–1844. doi: https://doi.org/10.1109/18.782104
  9. Rosenthal, J., Smarandache, R. (1999). Maximum Distance Separable Convolutional Codes. Applicable Algebra in Engineering, Communication and Computing, 10 (1), 15–32. doi: https://doi.org/10.1007/s002000050120
  10. Prihod'ko, S. I., Kuznecov, A. A., Gusev, S. A., Kuzhel', I. E. (2004). Algebraicheskoe postroenie nesistematicheskih svertochnyh kodov. Systemy obrobky informatsiyi, 8 (69), 170–175.
  11. Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13 (2), 260–269. doi: https://doi.org/10.1109/tit.1967.1054010
  12. Gluesing-Luerssen, H., Helmke, U., Iglesias Curto, J. (2010). Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 4 (1), 83–99. doi: https://doi.org/10.3934/amc.2010.4.83
  13. Gomez-Torrecillas, J., Lobillo, F. J., Navarro, G. (2017). A Sugiyama-Like Decoding Algorithm for Convolutional Codes. IEEE Transactions on Information Theory, 63 (10), 6216–6226. doi: https://doi.org/10.1109/tit.2017.2731774
  14. Prihod’ko, S. I., Kuz’menko, D. M. (2008). Method of decoding of algebraic convolution codes. Systemy obrobky informatsiyi, 2 (69), 12–17.
  15. Ortin, J., Garcia, P., Gutierrez, F., Valdovinos, A. (2009). Two step SOVA-based decoding algorithm for tailbiting codes. IEEE Communications Letters, 13 (7), 510–512. doi: https://doi.org/10.1109/lcomm.2009.090810
  16. Bushisue, S., Suyama, S., Nagata, S., Miki, N. (2017). Performance Comparison of List Viterbi Algorithm of Tail-Biting Convolutional Code for Future Machine Type Communications. IEICE Transactions on Communications, E100.B (8), 1293–1300. doi: https://doi.org/10.1587/transcom.2016fgp0018
  17. Han, Y. S., Wu, T.-Y., Chen, P.-N., Varshney, P. K. (2018). A Low-Complexity Maximum-Likelihood Decoder for Tail-Biting Convolutional Codes. IEEE Transactions on Communications, 66 (5), 1859–1870. doi: https://doi.org/10.1109/tcomm.2018.2790935
  18. Kao, J. W. H., Berber, S. M., Bigdeli, A. (2009). A General Rate K/N Convolutional Decoder Based on Neural Networks with Stopping Criterion. Advances in Artificial Intelligence, 2009, 1–11. doi: https://doi.org/10.1155/2009/356120
  19. Rajbhandari, S., Ghassemlooy, Z., Angelova, M. (2012). Adaptive “soft” sliding block decoding of convolutional code using the artificial neural network. Transactions on Emerging Telecommunications Technologies, 23 (7), 672–677. doi: https://doi.org/10.1002/ett.2523
  20. Azouaoui, A., Chana, I., Belkasmi, M. (2012). Efficient Information Set Decoding Based on Genetic Algorithms. International Journal of Communications, Network and System Sciences, 05 (07), 423–429. doi: https://doi.org/10.4236/ijcns.2012.57052
  21. Azouaoui, A., Belkasmi, M., Farchane, A. (2012). Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms. Journal of Electrical and Computer Engineering, 2012, 1–12. doi: https://doi.org/10.1155/2012/503834
  22. Berkani, A., Azouaoui, A., Belkasmi, M., Aylaj, B. (2017). Improved Decoding of linear Block Codes using compact Genetic Algorithms with larger tournament size. International Journal of Computer Science Issues, 14 (1), 15–24. doi: https://doi.org/10.20943/01201701.1524
  23. Shtompel, M. (2016). Soft decoding algebraic convolutional codes based on natural computing. Informatsiyno-keruiuchi systemy na zaliznychnomu transporti, 5, 14–18.
  24. Price, K., Storn, R. M., Lampinen, J. A. (2005). Differential evolution: A practical approach to global optimization. Springer, 539. doi: https://doi.org/10.1007/3-540-31306-0
  25. Jin, W., Fossorier, M. P. C. (2007). Reliability-Based Soft-Decision Decoding With Multiple Biases. IEEE Transactions on Information Theory, 53 (1), 105–120. doi: https://doi.org/10.1109/tit.2006.887510

Published

2019-03-25

How to Cite

Panchenko, S., Prykhodko, S., Kozelkov, S., Shtompel, M., Kosenko, V., Shefer, O., & Dunaievska, O. (2019). Analysis of efficiency of the bioinspired method for decoding algebraic convolutional codes. Eastern-European Journal of Enterprise Technologies, 2(4 (98), 22–30. https://doi.org/10.15587/1729-4061.2019.160753

Issue

Section

Mathematics and Cybernetics - applied aspects