Distribution of local velocities in a circular pipe with accelerating fluid flow

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.162330

Keywords:

cylindrical pipe, fluid flow, flow structure, turbulence generation, hot-wire equipment.

Abstract

The results of experimental studies of accelerating fluid flow in a cylindrical pipe from rest are presented. With accelerated fluid flow, a delay of laminar-turbulent transition with instantaneous Re numbers, which are several orders of magnitude higher than critical Re in stationary conditions is observed. To determine the local characteristics of the unsteady flow, hot-wire equipment was used. For measuring the local velocity in the pipe, a hot-wire cone sensor was used, and for measuring shear stresses – a sensor mounted flush with the inner pipe wall. To process the experimental data, in addition to ensemble averaging, smoothing by time averaging over five adjacent points was also carried out. It turned out that in order to obtain smoother functions for the desired characteristic, it is necessary to have much more experiments the ensemble, especially in the wall area. It is found that with accelerated fluid flow from rest to the onset of turbulence, a uniform velocity distribution remains in the pipe section and velocity gradients are observed only in a thin surface layer. A sharp transition in the shear stress characteristic on the pipe wall τ0 with the laminar-turbulent transition is also observed in the characteristics of local velocities. At the moment of transition to the turbulent regime, a turning point appears on the average velocity graph, and velocity distribution and turbulence intensity undergo significant changes compared with steady turbulent flows. Turbulence is generated in the wall area and distributed to the pipeline section center at an almost constant velocity. The front of laminar-turbulent transition with unsteady fluid flow in the pipe is distributed towards the section center at an almost constant velocity

Author Biographies

Roman Hnativ, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Hydraulics and Sanitary Engineering

Orest Verbovskiy, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Hydraulics and Sanitary Engineering

References

  1. Mochalin, E. V. (2002). Variacionnaya formulirovka zadachi o prostranstvennom dvizhenii neszhimaemoy zhidkosti. Sb. nauchn. Trudov DGMI, 15, 269–280.
  2. Bondarenko, N. I., Terent'ev, Yu. I. (2009). O neustanovivshemsya dvizhenii szhimaemoy zhidkosti v napornom truboprovode. Mosk. gos. tekhn. un-t. Moscow, 54. Dep. v VINITI RAN 15.10.2009, No. 620-V2009.
  3. Kozlov, L. F., Babenko, V. V. (1985). Razvitie teorii pogranichnogo sloya. Vestnik AN USSR, 3, 91–92.
  4. Chung, D., Pullin, D. I. (2009). Large-eddy simulation and wall modelling of turbulent channel flow. Journal of Fluid Mechanics, 631, 281. doi: https://doi.org/10.1017/s0022112009006867
  5. Hnativ, R. M. (2012). Eksperymentalne vyznachennia pulsatsiyi dotychnykh napruzhen na stintsi truboprovodu pry perekhidnomu rezhymi rukhu ridyny. Promyslova hidravlika i pnevmatyka, 3 (37), 52–54.
  6. Hnativ, R. M. (2013). Doslidzhennia rozpodilu shvydkostei pry neustaleniy techiyi ridyny v truboprovodi. Promyslova hidravlika i pnevmatyka, 2 (40), 57–59.
  7. Adamkowski, A., Lewandowski, M. (2006). Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation. Journal of Fluids Engineering, 128 (6), 1351. doi: https://doi.org/10.1115/1.2354521
  8. Rahmatullin, Sh. I., Kim, D. P. (2006). Vliyanie stepeni turbulentnosti i chastoty turbulentnyh pul'saciy na gidravlicheskoe soprotivlenie krugloy truby. Neftyanoe hozyaystvo, 11, 110–111.
  9. Maruyama, T., Kuribayashi, T., Mizushina, T. (1976). The structure of the turbulence in transient pipe flows. Journal of Chemical Engineering of Japan, 9 (6), 431–439. doi: https://doi.org/10.1252/jcej.9.431
  10. Maruyama, T., Kato, Y., Mizushina, T. (1978). Transition to turbulence in starting pipe flows. Journal of Chemical Engineering of Japan, 11 (5), 346–353. doi: https://doi.org/10.1252/jcej.11.346
  11. Yahno, A., Hnativ, R. (2013). Dependence of the average flow rate from rising pressure in unsteady fluid movement in pipeline. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". Ser.: Mashynobuduvannia, 3, 198–202.
  12. Yakhno, O. M., Hnativ, R. M., Shcherbata, N. V., Hnativ, I. R. (2018). Doslidzhennia rozpodilu lokalnykh shvydkostei za rozghinnoho rukhu realnoi ridyny zi stanu spokoiu. Materialy XXIII mizhnarodnoi naukovo-tekhnichnoi konferentsiyi “Hidroaeromekhanika v inzhenerniy praktytsi”, 56–58.
  13. Tuzi, R., Blondeaux, P. (2008). Intermittent turbulence in a pulsating pipe flow. Journal of Fluid Mechanics, 599. doi: https://doi.org/10.1017/s0022112007009354
  14. Manuylovich, S. V. (2005). Issledovanie mekhanizmov vozbuzhdeniya i rosta neustoychivyh vozmushcheniy v pul'siruyushchih techeniyah. Izvestiya Rossiyskoy akademii nauk. Mekhanika zhidkosti i gaza, 4, 15–28.
  15. Magrakvelidze, T. (2005). K voprosu raspredeleniya skorostey pri turbulentnom techenii zhidkosti v krugloy trube. Sb. trudov In-t sistem upr. AN Gruzii, 9, 96–101.

Downloads

Published

2019-04-03

How to Cite

Hnativ, R., & Verbovskiy, O. (2019). Distribution of local velocities in a circular pipe with accelerating fluid flow. Eastern-European Journal of Enterprise Technologies, 2(7 (98), 58–63. https://doi.org/10.15587/1729-4061.2019.162330

Issue

Section

Applied mechanics