Development of a method for predicting the recurrence of states of atmospheric air pollution concentration in industrial cities

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.162652

Keywords:

air pollution, recurrence of state, window measure, recurrence prediction, hidden hazardous states

Abstract

This paper reports the method developed for predicting the recurrence of states related to air pollution at industrial cities based on the modified window measure. The new scientific result implies that dangerous states of the urban air pollution should be identified and predicted based not on the prediction of the concentration of pollution as it is, but based on forecasting the recurrence of states of the concentration of atmospheric air pollutions. The proposed prediction method makes it possible to operatively forecast not only the clear but also hidden dangerous states of air pollution at industrial cities. This provides for an overall improvement in the effectiveness of interventions to prevent hazardous contamination of the atmosphere and the environment. The results of experimental testing indicate the feasibility of the proposed method. It was established that in the test interval of monitoring (between counts 12‒36) there were sharp characteristic changes in the predicted measure for the recurrence of state. It is noted that such changes are the predictors of hidden events involving hazardous air pollution at industrial cities. It was experimentally found that a more accurate forecast is ensured for the forecast horizon d=1 (6 hours). It is shown that in the considered case, in order to ensure the reliability of forecasting laminar states in the contaminated atmosphere, the smoothing parameter to be selected should not be less than 0.8. It is noted that in order to predict dangerous states of the atmosphere pollution based on the dynamics in the prediction of a state recurrence measure, there is no need in the information about meteorological conditions at the time of forecasting and in the future. This is the main distinguishing feature and advantage of the proposed prediction method. A given method for RS forecasting proves to be invariant to urban configuration, the types of stationary and mobile pollution sources, as well as meteorological conditions

Author Biographies

Boris Pospelov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Ruslan Meleshchenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Fire and Rescue Training

Anatoliy Kosse, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire Prevention in Settlements

Ihor Khmyrov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Prevention Activities and Monitoring

Valerii Bosniuk, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Psychology of Activity in Certain Environments

References

  1. Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
  2. Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 106–113.
  3. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  4. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  5. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
  6. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology Environment and Conservation, 22 (3), 1171–1176.
  7. Aceves-Fernandez., M. A., Ramos-Arreguín, J. M., Pedraza-Ortega, J. C., Sotomayor-Olmedo., A., Tovar-Arriaga, S. (2012). Finding Trends of Airborne Harmful Pollutants by Using Recurrence Quantification Analysis. American Journal of Environmental Engineering, 1 (1), 10–14. doi: https://doi.org/10.5923/j.ajee.20110101.02
  8. Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence plots and their quantifications: Expanding horizons. Springer Proceedings in Physics. Vol. 180. Springer. doi: https://doi.org/10.1007/978-3-319-29922-8
  9. Snizhko, S. I., Shevchenko, O. H. (2011). Urbometeorolohichni aspekty zabrudnennia atmosfernoho povitria velykoho mista. Kyiv, 297.
  10. Berlyand, M. E. (2001). Sovremennye issledovaniya Glavnoy Geofizicheskoy Observatorii. Sankt-Peterburg, 344.
  11. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419
  12. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
  13. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
  14. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  15. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  16. Fedotov, V. H., Kol'cov, N. I. (2015). Modeli haoticheskoy dinamiki. Chast' 8. Entropiynye invarianty. Vestnik Kazanskogo tekhnologicheskogo universiteta, 18 (2).
  17. Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (04), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008
  18. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  19. Abaimov, S. G., Turcotte, D. L., Shcherbakov, R., Rundle, J. B., Yakovlev, G., Goltz, C., Newman, W. I. (2008). Earthquakes: Recurrence and Interoccurrence Times. Earthquakes: Simulations, Sources and Tsunamis, 777–795. doi: https://doi.org/10.1007/978-3-7643-8757-0_20
  20. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  21. Marwan, N., Kurths, J., Saparin, P. (2007). Generalised recurrence plot analysis for spatial data. Physics Letters A, 360 (4-5), 545–551. doi: https://doi.org/10.1016/j.physleta.2006.08.058
  22. Chen, C.-B., Yang, H., Kumara, S. (2018). Recurrence network modeling and analysis of spatial data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085714. doi: https://doi.org/10.1063/1.5024917
  23. Loieva, I. D., Vladymyrova, O. H., Verlan, V. A. (2010). Otsinka stanu zabrudnennia atmosfernoho povitria velykoho mista: metody analizu, prohnozu, rehuliuvannia. Odessa, 224.
  24. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
  25. Yapar, G. (2016). Modified simple exponential smoothing. Hacettepe Journal of Mathematics and Statistics, 47 (143), 1–1. doi: https://doi.org/10.15672/hjms.201614320580
  26. İrem, E. F. E., Çoban, B., Firuzan, E. (2017). Comparison of single and modified exponential smoothing methods in the presence of a structural break. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 89–100. doi: https://doi.org/10.18092/ulikidince.354325
  27. Selamlar, T. H. (2017). Modeling and forecasting time series data using ata method. İzmir: Dokuz Eylül Unıversıty Graduate School of Natural and Applied Scıences.

Downloads

Published

2019-04-08

How to Cite

Pospelov, B., Meleshchenko, R., Kosse, A., Khmyrov, I., & Bosniuk, V. (2019). Development of a method for predicting the recurrence of states of atmospheric air pollution concentration in industrial cities. Eastern-European Journal of Enterprise Technologies, 2(10 (98), 43–48. https://doi.org/10.15587/1729-4061.2019.162652